Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ultrafilter Extensions of Linearly Ordered Sets

  • Published:
Order Aims and scope Submit manuscript

Abstract

Ultrafilter extensions of arbitrary first-order models were introduced in Saveliev (2012). The main precursor of this construction was the extension of semigroups to semigroups of ultrafilters, a technique that was used to obtain significant results in algebra and dynamics. Here we consider another particular case where the models are linearly ordered sets. We explicitly calculate the extensions of a given linear order and the corresponding operations of minimum and maximum on a set. We show that the extended relation is no longer an order though it is close to the natural linear ordering of nonempty half-cuts of the set and that the two extended operations define a skew lattice structure on the set of ultrafilters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezhanishvili, G., Morandi, P.J.: Order-compactifications of totally ordered spaces: revisited. Order 28(3), 577–592 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biryukov, A.P.: Varieties of idempotent semigroups. Algebra i Logika 9(3), 255–273 (1970) (Russ. Engl. Transl. Algebra Logic 9(3), 153–164 (1970))

  3. Comfort, W.W., Negrepontis, S.: The Theory of Ultrafilters. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  4. Fedorchuk, V.V.: On ordered spaces. Dokl. Akad. Nauk SSSR Ser. Mat. 169(1), 777–780 (1966) (Russ. Engl. Transl. Soviet Math. Dokl. 7, 1011–1014 (1966))

    Google Scholar 

  5. Fedorchuk, V.V.: Some problems in the theory of ordered sets. Sibirskii Mat. J. 10(1), 172–187 (1969) (Russ. Engl. Transl. Sibirean Math. J. 10(1), 124–132 (1969))

  6. Fennemore, Ch.: All varieties of bands. Semigroup Forum 1(1), 172–179 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gerhard, J.A.: The lattice of equational classes of idempotent semigroups. J. Algebra 15(2), 195–224 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hindman, N., Strauss, D.: Algebra in the Stone–Čech Compactification. 2nd edn, revised and expanded. Walter de Gruyter, Berlin (2012)

    Google Scholar 

  9. Jordan, P.: Über nichtkommutative Verbände. Arch. Math. 2, 56–59 (1949)

    Article  Google Scholar 

  10. Kaufman, R.: Ordered sets and compact spaces. Colloq. Math. 17, 35–39 (1967)

    MATH  MathSciNet  Google Scholar 

  11. Kepka, T.: Quasitrivial groupoids and balanced identities. Acta Univ. Carol. Math. Phys. 22(2), 49–64 (1981)

    MATH  MathSciNet  Google Scholar 

  12. Leech, J.E.: Skew lattices in rings. Algebra Univers. 27, 48–72 (1989)

    Article  MathSciNet  Google Scholar 

  13. Leech, J.E.: Recent developments in the theory of skew lattices. Semigroup Forum 52, 7–24 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nagy, A.: Special Classes of Semigroups. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  15. Rosenstein, J.G.: Linear Orderings. Academic, New York (1982)

    MATH  Google Scholar 

  16. Saveliev, D.I.: Ultrafilter extensions of models. Lecture Notes in AICS, Springer, vol. 6521, pp. 162–177 (2011). An extended version in: Friedman, S.-D. et al. (eds.) The Infinity Project Proceedings. CRM Documents 11, Barcelona, pp. 599–616 (2012)

  17. Saveliev, D.I.: Formulas stable under ultrafilter extensions of models. In progress

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis I. Saveliev.

Additional information

Partially supported by RFBR grants 11-01-00958 and 11-01-93107 and ARRS grant P1-0288. Avalaible at arXiv:1310.4533 [math.LO].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saveliev, D. Ultrafilter Extensions of Linearly Ordered Sets. Order 32, 29–41 (2015). https://doi.org/10.1007/s11083-013-9313-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-013-9313-5

Keywords

Mathematics Subject Classifications (2010)