Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

pH-Responsive Nano Carriers for Doxorubicin Delivery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to design stimuli-responsive nanocarriers for anti-cancer drug delivery. For this purpose, doxorubicin (DOX)-loaded, polysebacic anhydride (PSA) based nanocapsules (NC) were combined with pH-sensitive poly (L-histidine) (PLH).

Method

PSA nano-carriers were first loaded with DOX and were coated with poly L-histidine to introduce pH sensitivity. The PLH-coated NCs were then covered with polyethylene glycol (PEG) to reduce macrophage uptake. The drug release profile from this system was examined in two different buffer solutions prepared as acidic (pH5) and physiological (pH 7.4) media. The physical and chemical properties of the nanocapsules were characterized by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet and visible absorption spectroscopy (UV–VIS), and scanning electron microscopy (SEM). In vitro studies of the prepared nanocapsules were conducted in MDA-MB-231 breast cancer cells.

Results

The results obtained by SEM and DLS revealed that nanocapsules have spherical morphology with an average size of 230 nm. Prepared pH sensitive nanocapsules exhibited pH-dependent drug release profile and promising intracellular release of drug. PEGylation of nanoparticles significantly prevented macrophage uptake compared to non-PEGylated particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

ATCC:

American type culture collection

DAPI:

4′,6-diamidino-2-phenylindole

DCM:

Dichloromethane

DLS:

Dynamic light scattering

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

EE:

Encapsulation efficiency

EPR:

Enhanced permeability and retention

FDA:

Food and drug administration

FTIR:

Fourier transform infrared spectroscopy

GPC:

Gel permeation chromatography

H-NMR:

Proton nuclear magnetic resonance

LC:

Loading capacity

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

MW:

Molecular weight

NCs:

Nanocapsules

PBS:

Phosphate buffered saline

PDI:

Poly dispersity index

PEG:

Polyethylene glycol

PFA:

Paraformaldehyde

PLH:

Poly (L-histidine)

PLL:

Poly L-lysine

PSA:

Polysebacic anhydride

PVA:

Polyvinyl alcohol

RPMI:

Roswell park memorial institute

SEM:

Scanning electron microscopy

TPA:

12-O-tetradecanoyl-phorbol-13-acetate

UV–VIS:

Ultraviolet and visible absorption spectroscopy

References

  1. Muvaffak A, Gürhan I, Hasirci N. Prolong cytotoxic effect colchicines released from biodegradable microspheres. J Biomed Mater Res B Appl Biomater. 2004;71B(2):295–304.

    Article  CAS  Google Scholar 

  2. Chen Y, Wan Y, Wang Y, Zhang H, Zhijun J. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int J Nanomedicine. 2011;6:2321–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol. 2010;197:3–53.

    Article  CAS  PubMed  Google Scholar 

  4. Tian L, Bae YH. Cancer nanomedicines targeting tumor extracellular pH. Colloids Surf B: Biointerfaces. 2012;99:116–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Johnson RP, Chung CW, Jeong Y, Kang DH, Suh H, Kim I. Poly(L-histidine)-tagged 5-aminolevulinic acid prodrugs: new photosensitizing precursors of protoporphyrin IX for photodynamic colon cancer therapy. Int J Nanomedicine. 2012;7:2497–512.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Bello RM, Midoux P. Histidylated polylysine as DNA vector: elevation of the imidazole protonation and reduced cellular uptake without change in the polyfection efficiency of serum stabilized negative polyplexes. Bioconjug Chem. 2001;12(1):92–109.

    Article  Google Scholar 

  7. Lee ES, Shin HJ, Na K, Bae YH. Poly(L-histidine)–PEG block copolymer micelles and pH-induced destabilization. J Control Release. 2003;90(3):363–74.

    Article  CAS  PubMed  Google Scholar 

  8. Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release. 2005;103(2):405–18.

    Article  CAS  PubMed  Google Scholar 

  9. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small. 2008;4(11):2043–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Leong KW, Brott BC, Langer R. Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J Biomed Mater Res. 1985;19(8):941–55.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang C, Wang W, Liu T, Wu Y, Guo H. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials. 2012;33(7):2187–96.

    Article  CAS  PubMed  Google Scholar 

  12. Liang Y, Xiao L, Zhai Y, Xie C, Deng L, Dong A. Preparation and characterization of biodegradable poly(sebacic anhydride) chain extended by glycol as drug carrier. J Appl Polym Sci. 2013;127(5):3948–53.

    Article  CAS  Google Scholar 

  13. Hasirci V, Yilgor P, Endogan T, Eke G, Hasirci N. Polymer fundamentals: polymer synthesis. In: Ducheyne P, Healy K, Hutmacher DE, Grainger DW, Kirkpatrick CJ, editors. Comprehensive biomaterials. New York: Elsevier Science; 2011. p. 349–71.

    Chapter  Google Scholar 

  14. Benns J, Choi JS, Mahato RI, Park JS, Kim SW. pH-sensitive cationic polymer gene delivery vehicle. Bioconjug Chem. 2000;11(5):637–45.

    Article  CAS  PubMed  Google Scholar 

  15. Shen E, Pizsczek R, Dziadul B, Narasimhan B. Microphase separation in bioerodible copolymers for drug delivery. Biomaterials. 2001;22(3):201–10.

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Qiu Z, Wang S, Zhou L, Zhang S. A modified double-emulsion method for the preparation of daunorubicin-loaded polymeric nanoparticle with enhanced in vitro anti-tumor activity. Biomed Mater. 2010;5(6):065002.

    Article  PubMed  Google Scholar 

  17. ImageJ. 2013 December 15. Available from: http://rsb.info.nih.gov/ij [Website].

  18. Huynh NT, Morille M, Bejaud J, Legras P, Vessieres A, Jaouen G, et al. Treatment of 9L gliosarcoma in rats by ferrociphenol-loaded lipid nanocapsules based on a passive targeting strategy via the EPR effect. Pharm Res. 2011;28(12):3189–98.

    Article  CAS  PubMed  Google Scholar 

  19. Bankar VH, Gaikwad PD, Pawar SP. Novel sustained release drug delivery systems: review. IJPRD. 2011;3(12):1–14.

    Google Scholar 

  20. Khandekar SV, Kulkarni MG, Devarajan PV. Polyaspartic acid functionalized gold nanoparticles for tumor targeted doxorubicin delivery. J Biomed Nanotechnol. 2014;10:143–53.

    Article  CAS  PubMed  Google Scholar 

  21. Wong H, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93(8):1993–2008.

    Article  CAS  PubMed  Google Scholar 

  22. Chavanpatil MD, Khdair A, Patil Y, Handa H, Mao G, Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs. J Pharm Sci. 2007;96(12):3379–89.

    Article  CAS  PubMed  Google Scholar 

  23. Yousefpour P, Atyabi F, Farahani EV, Sakhtianchi R, Dinarvand R. Polyanionic carbohydrate doxorubicin-dextran nanocomplex as a delivery system for anticancer drugs: in vitro analysis and evaluations. Int J Nanomedicine. 2011;6:1487–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bajelan E, Haeri A, Vali AM, Ostad SN, Dadashzadeh S. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci. 2012;15(4):568–82.

    CAS  PubMed  Google Scholar 

  25. Patchornik A, Berger A, Katchalski E. Poly (L-histidine). J Am Chem Soc. 1957;79:5227–30.

    Article  CAS  Google Scholar 

  26. Chen AZ, Chen MY, Wang SB, Huang XN, Liu YG, Chen ZX. Poly(L-histidine)-chitosan/alginate complex microcapsule as a novel drug delivery agent. J Appl Polym Sci. 2012;124(5):3728–36.

    Article  CAS  Google Scholar 

  27. Patel AG, Kaufmann SH. How does doxorubicin work? eLife. 2012;1:e00387.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hande RK. Topoisomerase II, inhibitors. Updat Cancer Ther. 2008;3(1):13–26.

    Article  Google Scholar 

  29. Denard B, Lee C, Ye J. Doxorubicin blocks proliferation of cancer cells through proteolytic activation of CREB3L1. elife Camb. 2012;18(1):e00090.

    Google Scholar 

  30. Varkouhi AK, Scholte M, Storm G, Haisma HJ. Endosomal escape pathways for delivery of biologicals. J Control Release. 2011;151(3):220–8.

    Article  CAS  PubMed  Google Scholar 

  31. Gao Y, Chen Y, Ji X, He X, Yin Q. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano. 2011;5(12):9788–98.

    Article  CAS  PubMed  Google Scholar 

  32. Uster PS, Deamer DW. pH-dependent fusion of liposomes using titratable polycations. Biochemistry. 1985;24(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Mizutani H, Oikawa S, Hiraku Y, Murata M, Kojima M, Kawanishi S, et al. Distinct mechanisms of site-specific oxidative DNA damage by doxorubicin in the presence of copper(II) and NADPH-cytochrome P450 reductase. Cancer Sci. 2003;94:686–91.

    Article  CAS  PubMed  Google Scholar 

  35. Kipper MJ, Shen E, Determan A, Narasimhan B. Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials. 2002;23(22):4405–12.

    Article  CAS  PubMed  Google Scholar 

  36. Muvaffak A, Gürhan I, Hasirci N. Cytotoxicity of 5-fluorouracil entrapped in gelatin microspheres. J Microencapsul. 2004;21(3):293–306.

    Article  CAS  PubMed  Google Scholar 

  37. Berkland C, Kipper MJ, Narasimhan B, Kim KK, Pack DW. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Control Release. 2004;94(1):129–41.

    Article  CAS  PubMed  Google Scholar 

  38. Hsu W, Lesniak MS, Tyler B, Brem H. Local delivery of interleukin-2 and adriamycin is synergistic in the treatment of experimental malignant glioma. J Neurooncol. 2005;74(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  39. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84.

    Article  CAS  PubMed  Google Scholar 

  40. Soma CE, Dubernet C, Barratt G, Benita S, Couvreur P. Investigation of the role of macrophages on the cytotoxicity of doxorubicin and doxorubicin-loaded nanoparticles on M5076 cells in vitro. J Control Release. 2000;68(2):283–9.

    Article  CAS  PubMed  Google Scholar 

  41. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with grant No: 111M385. GG and BN were supported by funding from the Norwegian Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrin Hasirci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherifam, S., Skjeldal, F.M., Griffiths, G. et al. pH-Responsive Nano Carriers for Doxorubicin Delivery. Pharm Res 32, 1249–1263 (2015). https://doi.org/10.1007/s11095-014-1530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1530-0

KEY WORDS