Abstract
We investigate the optimization of routing, modulation format adaptation, spectral and launch power assignment as a means of improving the utilization of limited network resources and increasing the network throughput. We consider a transparent optical network operating in the nonlinear transmission regime and using the latest software adapted coherent optical techniques. We separate the problem into one of routing, modulation adaption and channel assignment, followed by channel spectral assignment, and launch power allocation. It is shown, for three test networks, that the launch power allocation and channel spectral assignment can improve the transmission SNR margin over the fixed modulation, fixed power, fully loaded link worst case by approximately 3–4 dB. This increase in SNR margin can be utilized through modulation format adaption to increase the overall network throughput. This paper highlights that increased gains in network throughput can be achieved in nonlinear impaired networks when individual transmitter spectral assignment and launch power are optimized to minimize the nonlinear interference.
Similar content being viewed by others
Notes
Recently a number of authors [21–23] have proposed correction terms to the GN model to overcome some of the GN model shortcomings particularly in the early spans of a transmission link where the accumulated chromatic dispersion is low. These correction terms reduce the expected nonlinear interference noise power for the modulation formats considered in this paper. We thus utilize the simpler GN model here under the assumption that it conservatively estimates the nonlinear interference noise and thus allows for robust network optimization.
For the DWDM channel spacing and signal symbol rate used in this work, the assumption of well-spaced signals and insignificant FWM was found to lead to an error of only \(\approx 0.31\,\%\) on the value of \(X_m\) used in equation (7).
References
Schmogrow, R.M., Hillerkuss, D., Dreschmann, M., Huebner, M., Winter, M., Meyer, J., Nebendahl, B., Koos, C., Becker, J., Freude, W., Leuthold, J.: Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd. IEEE Photonics Technol. Lett. 22(21), 1601 (2010). doi:10.1109/LPT.2010.2073698
Choi, H.Y., Tsuritani, T., Morita, I.: BER-adaptive flexible-format transmitter for elastic optical networks. Opt. Express 20(17), 18652 (2012). doi:10.1364/OE.20.018652
Roberts, K., Laperle, C.: Flexible transceivers. In: 38th European Conference and Exposition on Optical Communications, Amsterdam, NL, vol. 1, p. We.3.A.3 (2012). doi:10.1364/ECEOC.2012.We.3.A.3
Ives, D.J., Bayvel, P., Savory, S.J.: Physical layer transmitter and routing optimization to maximize the traffic throughput of a nonlinear optical mesh network. In: International Conference on Optical Network Design and Modeling, Stockholm, SE, pp. 168–173 (2014)
Nag, A., Tornatore, M., Mukherjee, B.: Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol. 28(4), 466 (2010). doi:10.1109/JLT.2009.2034396
Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66 (2009). doi:10.1109/MCOM.2009.5307468
Gerstel, O., Jinno, M., Lord, A., Yoo, S.J.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), s12 (2012). doi:10.1109/MCOM.2012.6146481
Kozicki, B., Takara, H., Sone, Y., Watanabe, A., Jinno, M.: Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with Bit per Symbol Adjustment. In: Optical Fiber Communication Conference, San Diego, CA, p. OMU3 (2010). doi:10.1364/OFC.2010.OMU3
Christodoulopoulos, K., Tomkos, I., Varvarigos, E.A.: Elastic bandwidth allocation in flexible OFDM-based optical networks. J. Lightwave Technol. 29(9), 1354 (2011). doi:10.1109/JLT.2011.2125777
Palkopoulou, E., Angelou, M., Klonidis, D., Christodoulopoulos, K., Klekamp, A., Buchali, F., Varvarigos, E., Tomkos, I.: Quantifying spectrum, cost, and energy efficiency in fixed-grid and flex-grid networks [invited]. J. Opt. Commun. Netw. 4(11), B42 (2012). doi:10.1364/JOCN.4.000B42
Forghieri, F., Tkach, R., Chraplyvy, A., Marcuse, D.: Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photonics Technol. Lett. 6(6), 754 (1994). doi:10.1109/68.300184
Adhya, A., Datta, D.: Design methodology for WDM backbone networks using FWM-aware heuristic algorithm. Opt. Switch. Netw. 6(1), 10 (2009). doi:10.1016/j.osn.2008.05.006
Nag, A., Tornatore, M., Mukherjee, B.: Power management in mixed line rate optical networks. In: Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, Monterey, CA, vol. 2, p. PTuB4. OSA (2010). doi:10.1364/PS.2010.PTuB4
Beyranvand, H., Salehi, Ja: A quality-of-transmission aware dynamic routing and spectrum assignment scheme for future elastic optical networks. J. Lightwave Technol. 31(18), 3043 (2013). doi:10.1109/JLT.2013.2278572
Ives, D.J., Savory, S.J.: Transmitter Optimized Optical Networks. In: National Fiber Optic Engineers Conference, Anaheim, CA, p. JW2A.64. OSA (2013). doi:10.1364/NFOEC.2013.JW2A.64
Rafique, D., Ellis, A.D.: Nonlinear penalties in dynamic optical networks employing autonomous transponders. IEEE Photonics Technol. Lett. 23(17), 1213 (2011). doi:10.1109/LPT.2011.2158603
Splett, A., Kurtske, C., Petermann, K.: Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities. In: European Conference on Optical Communications, Montreux, CH, p. MoC2.4 (1993)
Mitra, P.P., Stark, J.B.: Nonlinear limits to the information capacity of optical fibre communications. Nature 411(6841), 1027 (2001). doi:10.1038/35082518
Carena, A., Bosco, G., Curri, V., Poggiolini, P., Taiba, M.T., Forghieri, F.: Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links. In: 36th European Conference and Exhibition on Optical Communication, Torino, IT, vol. 1, p. P4.07. IEEE (2010). doi:10.1109/ECOC.2010.5621509
Vacondio, F., Rival, O., Simonneau, C., Grellier, E., Bononi, A., Lorcy, L., Antona, J.C., Bigo, S.: On nonlinear distortions of highly dispersive optical coherent systems. Opt. Expr. 20(2), 1022 (2012). doi:10.1364/OE.20.001022
Dar, R., Feder, M., Mecozzi, A., Shtaif, M.: Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Opt. Expr. 21(22), 25685 (2013). doi:10.1364/OE.21.025685
Dar, R., Feder, M., Mecozzi, A., Shtaif, M.: Accumulation of nonlinear interference noise in fiber-optic systems. Opt. Expr. 22(12), 14199 (2014). doi:10.1364/OE.22.014199
Carena, A., Bosco, G., Curri, V., Jiang, Y., Poggiolini, P., Forghieri, F.: EGN model of non-linear fiber propagation. Opt. Expr. 22(13), 16335 (2014). doi:10.1364/OE.22.016335
Kogelnik, H., Yariv, A.: Considerations of noise and schemes for its reduction in laser amplifiers. Proc. IEEE 52(2), 165 (1964). doi:10.1109/PROC.1964.2805
Yariv, A.: Signal-to-noise considerations in fiber links with periodic or distributed optical amplification. Opt. Lett. 15(19), 1064 (1990). doi:10.1364/OL.15.001064
Poggiolini, P., Bosco, G., Carena, A., Curri, V., Jiang, Y., Forghieri, F.: The GN-model of fiber non-linear propagation and its applications. J Lightwave Technol. 32(4), 694 (2014). doi:10.1109/JLT.2013.2295208
Ives, D.J., Bayvel, P., Savory, S.J.: Adapting transmitter power and modulation format to improve optical network performance utilizing the Gaussian noise model of nonlinear impairments. J. Lightwave Technol. 32(21), 3485 (2014). doi:10.1109/JLT.2014.2346582
Poggiolini, P.: The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3857 (2012). doi:10.1109/JLT.2012.2217729
Carena, A., Bosco, G.: Impact of the transmitted signal initial dispersion transient on the accuracy of the GN-model of non-linear propagation. In: European Conference and Exposition on Optical Communications, London, vol. 1, p. Th.1.D.4 (2013). doi:10.1049/cp.2013.1515
Ip, E., Kahn, J.M.: Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26(20), 3416 (2008). doi:10.1109/JLT.2008.927791
ETSI. Network Aspects (NA); Availability performance of path elements of international digital paths (1998)
Snyder, J.P.: Map Projections—a working manual. Technical report, U.S. Geological Survey Proffesional Paper 1395, Washington, D.C. (1987)
Ramaswami, R., Sivarajan, K.: Design of logical topologies for wavelength-routed all-optical networks. In: Proceedings of INFOCOM’ 95, Boston, MA, p. 10c.4.1. IEEE Comput. Soc. Press (1995). doi:10.1109/INFCOM.1995.516012
Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4 : Experience with a Globally-Deployed Software Defined WAN. In: SIGCOMM (2013). doi:10.1145/2486001.2486019
Monoyios, D., Vlachos, K.: Multiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problem. J. Opt. Commun. Netw. 3(1), 40 (2011). doi:10.1364/JOCN.3.000040
Cho, K., Yoon, D.: On the general BER expression of one- and two-dimensional amplitude modulations. IEEE Trans. Commun. 50(7), 1074 (2002). doi:10.1109/TCOMM.2002.800818
Vitthaladevuni, P.K., Alouini, M.S., Kieffer, J.: Exact BER computation for cross QAM constellations. IEEE Trans. Wirel. Commun. 4(6), 3039 (2005). doi:10.1109/TWC.2005.857997
Poggiolini, P., Bosco, G., Carena, A., Cigliutti, R., Curri, V., Forghieri, F., Pastorelli, R., Piciaccia, S.: The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks. In: Optical Fiber Communication Conference, Anaheim, CA, vol. 1, p. OW1H.3 (2013). doi:10.1364/OFC.2013.OW1H.3
Banerjee, D., Mukherjee, B.: A practical approach for routing and wavelength assignment in large wavelength-routed optical networks. IEEE J. Sel. Areas Commun. 14(5), 903 (1996). doi:10.1109/49.510913
Wauters, N., Demeester, P.: Design of the optical path layer in multiwavelength cross-connected networks. IEEE J. Sel. Areas Commun. 14(5), 881 (1996). doi:10.1109/49.510911
Yen, J.Y.: Finding the K shortest loopless paths in a network. Manag. Sci. 17(11), 712 (1971). doi:10.2307/2629312
Wright, P., Lord, A., Nicholas, S.: Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology. In: Optical Fiber Communication Conference, Los Angeles, CA, p. OTh3B.5 (2012). doi:10.1364/OFC.2012.OTh3B.5
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported by the UK Engineering and Physical Sciences Research Council, through the Centre for Doctoral Training in Photonics Systems Development, EP/G037256/1, and programme grant UNLOC, EP/J017582/1, and The Royal Academy of Engineering / The Leverhulme Trust.
Rights and permissions
About this article
Cite this article
Ives, D.J., Bayvel, P. & Savory, S.J. Routing, modulation, spectrum and launch power assignment to maximize the traffic throughput of a nonlinear optical mesh network. Photon Netw Commun 29, 244–256 (2015). https://doi.org/10.1007/s11107-015-0488-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-015-0488-0