Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Routing, modulation, spectrum and launch power assignment to maximize the traffic throughput of a nonlinear optical mesh network

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We investigate the optimization of routing, modulation format adaptation, spectral and launch power assignment as a means of improving the utilization of limited network resources and increasing the network throughput. We consider a transparent optical network operating in the nonlinear transmission regime and using the latest software adapted coherent optical techniques. We separate the problem into one of routing, modulation adaption and channel assignment, followed by channel spectral assignment, and launch power allocation. It is shown, for three test networks, that the launch power allocation and channel spectral assignment can improve the transmission SNR margin over the fixed modulation, fixed power, fully loaded link worst case by approximately 3–4 dB. This increase in SNR margin can be utilized through modulation format adaption to increase the overall network throughput. This paper highlights that increased gains in network throughput can be achieved in nonlinear impaired networks when individual transmitter spectral assignment and launch power are optimized to minimize the nonlinear interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Recently a number of authors [2123] have proposed correction terms to the GN model to overcome some of the GN model shortcomings particularly in the early spans of a transmission link where the accumulated chromatic dispersion is low. These correction terms reduce the expected nonlinear interference noise power for the modulation formats considered in this paper. We thus utilize the simpler GN model here under the assumption that it conservatively estimates the nonlinear interference noise and thus allows for robust network optimization.

  2. For the DWDM channel spacing and signal symbol rate used in this work, the assumption of well-spaced signals and insignificant FWM was found to lead to an error of only \(\approx 0.31\,\%\) on the value of \(X_m\) used in equation (7).

References

  1. Schmogrow, R.M., Hillerkuss, D., Dreschmann, M., Huebner, M., Winter, M., Meyer, J., Nebendahl, B., Koos, C., Becker, J., Freude, W., Leuthold, J.: Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd. IEEE Photonics Technol. Lett. 22(21), 1601 (2010). doi:10.1109/LPT.2010.2073698

    Article  Google Scholar 

  2. Choi, H.Y., Tsuritani, T., Morita, I.: BER-adaptive flexible-format transmitter for elastic optical networks. Opt. Express 20(17), 18652 (2012). doi:10.1364/OE.20.018652

    Article  Google Scholar 

  3. Roberts, K., Laperle, C.: Flexible transceivers. In: 38th European Conference and Exposition on Optical Communications, Amsterdam, NL, vol. 1, p. We.3.A.3 (2012). doi:10.1364/ECEOC.2012.We.3.A.3

  4. Ives, D.J., Bayvel, P., Savory, S.J.: Physical layer transmitter and routing optimization to maximize the traffic throughput of a nonlinear optical mesh network. In: International Conference on Optical Network Design and Modeling, Stockholm, SE, pp. 168–173 (2014)

  5. Nag, A., Tornatore, M., Mukherjee, B.: Optical network design with mixed line rates and multiple modulation formats. J. Lightwave Technol. 28(4), 466 (2010). doi:10.1109/JLT.2009.2034396

    Article  Google Scholar 

  6. Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66 (2009). doi:10.1109/MCOM.2009.5307468

    Article  Google Scholar 

  7. Gerstel, O., Jinno, M., Lord, A., Yoo, S.J.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), s12 (2012). doi:10.1109/MCOM.2012.6146481

    Article  Google Scholar 

  8. Kozicki, B., Takara, H., Sone, Y., Watanabe, A., Jinno, M.: Distance-adaptive spectrum allocation in elastic optical path network (SLICE) with Bit per Symbol Adjustment. In: Optical Fiber Communication Conference, San Diego, CA, p. OMU3 (2010). doi:10.1364/OFC.2010.OMU3

  9. Christodoulopoulos, K., Tomkos, I., Varvarigos, E.A.: Elastic bandwidth allocation in flexible OFDM-based optical networks. J. Lightwave Technol. 29(9), 1354 (2011). doi:10.1109/JLT.2011.2125777

    Article  Google Scholar 

  10. Palkopoulou, E., Angelou, M., Klonidis, D., Christodoulopoulos, K., Klekamp, A., Buchali, F., Varvarigos, E., Tomkos, I.: Quantifying spectrum, cost, and energy efficiency in fixed-grid and flex-grid networks [invited]. J. Opt. Commun. Netw. 4(11), B42 (2012). doi:10.1364/JOCN.4.000B42

    Article  Google Scholar 

  11. Forghieri, F., Tkach, R., Chraplyvy, A., Marcuse, D.: Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photonics Technol. Lett. 6(6), 754 (1994). doi:10.1109/68.300184

    Article  Google Scholar 

  12. Adhya, A., Datta, D.: Design methodology for WDM backbone networks using FWM-aware heuristic algorithm. Opt. Switch. Netw. 6(1), 10 (2009). doi:10.1016/j.osn.2008.05.006

    Article  Google Scholar 

  13. Nag, A., Tornatore, M., Mukherjee, B.: Power management in mixed line rate optical networks. In: Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, Monterey, CA, vol. 2, p. PTuB4. OSA (2010). doi:10.1364/PS.2010.PTuB4

  14. Beyranvand, H., Salehi, Ja: A quality-of-transmission aware dynamic routing and spectrum assignment scheme for future elastic optical networks. J. Lightwave Technol. 31(18), 3043 (2013). doi:10.1109/JLT.2013.2278572

    Article  Google Scholar 

  15. Ives, D.J., Savory, S.J.: Transmitter Optimized Optical Networks. In: National Fiber Optic Engineers Conference, Anaheim, CA, p. JW2A.64. OSA (2013). doi:10.1364/NFOEC.2013.JW2A.64

  16. Rafique, D., Ellis, A.D.: Nonlinear penalties in dynamic optical networks employing autonomous transponders. IEEE Photonics Technol. Lett. 23(17), 1213 (2011). doi:10.1109/LPT.2011.2158603

    Article  Google Scholar 

  17. Splett, A., Kurtske, C., Petermann, K.: Ultimate transmission capacity of amplified optical fiber communication systems taking into account fiber nonlinearities. In: European Conference on Optical Communications, Montreux, CH, p. MoC2.4 (1993)

  18. Mitra, P.P., Stark, J.B.: Nonlinear limits to the information capacity of optical fibre communications. Nature 411(6841), 1027 (2001). doi:10.1038/35082518

    Article  Google Scholar 

  19. Carena, A., Bosco, G., Curri, V., Poggiolini, P., Taiba, M.T., Forghieri, F.: Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links. In: 36th European Conference and Exhibition on Optical Communication, Torino, IT, vol. 1, p. P4.07. IEEE (2010). doi:10.1109/ECOC.2010.5621509

  20. Vacondio, F., Rival, O., Simonneau, C., Grellier, E., Bononi, A., Lorcy, L., Antona, J.C., Bigo, S.: On nonlinear distortions of highly dispersive optical coherent systems. Opt. Expr. 20(2), 1022 (2012). doi:10.1364/OE.20.001022

    Article  Google Scholar 

  21. Dar, R., Feder, M., Mecozzi, A., Shtaif, M.: Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Opt. Expr. 21(22), 25685 (2013). doi:10.1364/OE.21.025685

    Article  Google Scholar 

  22. Dar, R., Feder, M., Mecozzi, A., Shtaif, M.: Accumulation of nonlinear interference noise in fiber-optic systems. Opt. Expr. 22(12), 14199 (2014). doi:10.1364/OE.22.014199

    Article  Google Scholar 

  23. Carena, A., Bosco, G., Curri, V., Jiang, Y., Poggiolini, P., Forghieri, F.: EGN model of non-linear fiber propagation. Opt. Expr. 22(13), 16335 (2014). doi:10.1364/OE.22.016335

    Article  Google Scholar 

  24. Kogelnik, H., Yariv, A.: Considerations of noise and schemes for its reduction in laser amplifiers. Proc. IEEE 52(2), 165 (1964). doi:10.1109/PROC.1964.2805

  25. Yariv, A.: Signal-to-noise considerations in fiber links with periodic or distributed optical amplification. Opt. Lett. 15(19), 1064 (1990). doi:10.1364/OL.15.001064

    Article  Google Scholar 

  26. Poggiolini, P., Bosco, G., Carena, A., Curri, V., Jiang, Y., Forghieri, F.: The GN-model of fiber non-linear propagation and its applications. J Lightwave Technol. 32(4), 694 (2014). doi:10.1109/JLT.2013.2295208

    Article  Google Scholar 

  27. Ives, D.J., Bayvel, P., Savory, S.J.: Adapting transmitter power and modulation format to improve optical network performance utilizing the Gaussian noise model of nonlinear impairments. J. Lightwave Technol. 32(21), 3485 (2014). doi:10.1109/JLT.2014.2346582

    Article  Google Scholar 

  28. Poggiolini, P.: The GN model of non-linear propagation in uncompensated coherent optical systems. J. Lightwave Technol. 30(24), 3857 (2012). doi:10.1109/JLT.2012.2217729

    Article  Google Scholar 

  29. Carena, A., Bosco, G.: Impact of the transmitted signal initial dispersion transient on the accuracy of the GN-model of non-linear propagation. In: European Conference and Exposition on Optical Communications, London, vol. 1, p. Th.1.D.4 (2013). doi:10.1049/cp.2013.1515

  30. Ip, E., Kahn, J.M.: Compensation of dispersion and nonlinear impairments using digital backpropagation. J. Lightwave Technol. 26(20), 3416 (2008). doi:10.1109/JLT.2008.927791

    Article  Google Scholar 

  31. ETSI. Network Aspects (NA); Availability performance of path elements of international digital paths (1998)

  32. Snyder, J.P.: Map Projections—a working manual. Technical report, U.S. Geological Survey Proffesional Paper 1395, Washington, D.C. (1987)

  33. Ramaswami, R., Sivarajan, K.: Design of logical topologies for wavelength-routed all-optical networks. In: Proceedings of INFOCOM’ 95, Boston, MA, p. 10c.4.1. IEEE Comput. Soc. Press (1995). doi:10.1109/INFCOM.1995.516012

  34. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4 : Experience with a Globally-Deployed Software Defined WAN. In: SIGCOMM (2013). doi:10.1145/2486001.2486019

  35. Monoyios, D., Vlachos, K.: Multiobjective genetic algorithms for solving the impairment-aware routing and wavelength assignment problem. J. Opt. Commun. Netw. 3(1), 40 (2011). doi:10.1364/JOCN.3.000040

    Article  Google Scholar 

  36. Cho, K., Yoon, D.: On the general BER expression of one- and two-dimensional amplitude modulations. IEEE Trans. Commun. 50(7), 1074 (2002). doi:10.1109/TCOMM.2002.800818

    Article  Google Scholar 

  37. Vitthaladevuni, P.K., Alouini, M.S., Kieffer, J.: Exact BER computation for cross QAM constellations. IEEE Trans. Wirel. Commun. 4(6), 3039 (2005). doi:10.1109/TWC.2005.857997

    Article  Google Scholar 

  38. Poggiolini, P., Bosco, G., Carena, A., Cigliutti, R., Curri, V., Forghieri, F., Pastorelli, R., Piciaccia, S.: The LOGON strategy for low-complexity control plane implementation in new-generation flexible networks. In: Optical Fiber Communication Conference, Anaheim, CA, vol. 1, p. OW1H.3 (2013). doi:10.1364/OFC.2013.OW1H.3

  39. Banerjee, D., Mukherjee, B.: A practical approach for routing and wavelength assignment in large wavelength-routed optical networks. IEEE J. Sel. Areas Commun. 14(5), 903 (1996). doi:10.1109/49.510913

    Article  Google Scholar 

  40. Wauters, N., Demeester, P.: Design of the optical path layer in multiwavelength cross-connected networks. IEEE J. Sel. Areas Commun. 14(5), 881 (1996). doi:10.1109/49.510911

    Article  Google Scholar 

  41. Yen, J.Y.: Finding the K shortest loopless paths in a network. Manag. Sci. 17(11), 712 (1971). doi:10.2307/2629312

    Article  MATH  Google Scholar 

  42. Wright, P., Lord, A., Nicholas, S.: Comparison of optical spectrum utilization between flexgrid and fixed grid on a real network topology. In: Optical Fiber Communication Conference, Los Angeles, CA, p. OTh3B.5 (2012). doi:10.1364/OFC.2012.OTh3B.5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Ives.

Additional information

This work was supported by the UK Engineering and Physical Sciences Research Council, through the Centre for Doctoral Training in Photonics Systems Development, EP/G037256/1, and programme grant UNLOC, EP/J017582/1, and The Royal Academy of Engineering / The Leverhulme Trust.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ives, D.J., Bayvel, P. & Savory, S.J. Routing, modulation, spectrum and launch power assignment to maximize the traffic throughput of a nonlinear optical mesh network. Photon Netw Commun 29, 244–256 (2015). https://doi.org/10.1007/s11107-015-0488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0488-0

Keywords