Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

System innovations in open WDM DCI networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We review the most important WDM system innovations motivated by the evolution of DCI transport. State-of-the-art coherent transmission has already exceeded 6 b/s/Hz in transatlantic deployments. Moreover, the adoption of software innovations in automation and programmability, which DCI pioneered in transport networks, has also simplified operations and enables the emergence of open transport architectures. Combining these advances with emerging network analytic frameworks allows exciting innovations in network design and management optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The amount of per-device configuration changes for DC devices (DC routers) is significantly more than that of backbone devices (peering routers, WDM devices). Reference [47] states that 90% of backbone device samples have less than 500 updated lines per week, while only 50% of POP/DC samples are of the same size. Compared to > 700 lines of configuration changes for DC devices, backbone devices see about 150 updated lines per change.

References

  1. Hlzle, U.: Plenary talk—a ubiquitous cloud requires a transparent network. In: Optical Fiber Communication Conference (OFC) (2017)

  2. Vusirikala, V.: Plenary talk—SDN enabled programmable, dynamic optical layer. In: European Conference on Optical Communication (ECOC) (2017)

  3. Global Cloud Index: www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html. Accessed 21 Mar 2019

  4. Hamilton, J.: How many data centers needed world-wide. https://perspectives.mvdirona.com/2017/04/how-many-data-centers-needed-world-wide. Accessed 24 Mar 2019

  5. Koley, B.: The innovations and future needs of WDM transport for inter-data-center interconnections. In: Optical Fiber Communication Conference (OFC), OSA (2014)

  6. Paraschis, L., Raj, K.: Innovations in inter data center transport networks. In: Willner, A. (ed.) Optical Fiber Telecommunications VII, 1st edn, pp. 673–718. Elsevier, Amsterdam (2019)

    Google Scholar 

  7. Paraschis, L.: Advancements in metro regional and core transport network architectures for the next-generation internet. In: Kaminow, I.P., Li, T., Willner, A.E. (eds.) Optical Fiber Telecommunications VIB, Optics and Photonics, 6th edn, pp. 793–817. Elsevier, Amsterdam (2013)

    Chapter  Google Scholar 

  8. Koley, B.: Keynote talk—the zero touch network. In: 12th International Conference on Network and Service Management (CNSM) (2016)

  9. Paraschis, L.: Plenary talk—SDN innovations in WAN. In: Optical Internetworking Forum (OIF) (oif2015.083) (2015)

  10. Shaikh, A., Hofmeister, T., Dangui, V., Vusirikala, V.: Vendor-neutral network representations for transport SDN. In: Optical Fiber Communication Conference (OFC), OSA (2016)

  11. Xie, C., Wang, L., Dou, L., Xia, M., Chen, S., Zhang, H., Sun, Z., Cheng, J.: Open and disaggregated optical transport networks for data center interconnects. J. Opt. Commun. Netw. 12, C12 (2020)

    Article  Google Scholar 

  12. Symposium: Transport network management and analytics innovations (Tu3H). In: Optical Fiber Communication Conference (OFC) (2018)

  13. Sadasivarao, A., Jain, S., Sharfuddin, Pithewan, K., Kantak, P., Lu, B., Paraschis, L.: High performance streaming telemetry in optical transport networks. In: Optical Fiber Communication Conference (OFC), OSA (2018)

  14. Sadasivarao, A., Syed, S., Lu, B., Jain, S., Kunjidhapatham, A., Gomes, P., Valiveti, R., Paraschis, L., Brar, J., Raj, K.: Demonstration of advanced open WDM operations and analytics, based on an application-extensible, declarative, data model abstracted instrumentation platform. In: Optical Fiber Communication Conference (OFC), OSA (2019)

  15. Kumpera, A., Dominic, V., Awadalla, A., Dardis, L., Rahn, J., Sanders, S., Mitchell, M., Mertz, P., Shartle, G., Jackson, S., Blakey, S., Sokar, M., Krause, D., Sun, H., Wu, K.-T., Cannon, P.: Real-time superchannel transmission over 10,500 km submarine link at 466 b/s/Hz spectral efficiency. Opt. Express 26, 15039 (2018)

    Article  Google Scholar 

  16. Grubb, S., Mertz, P., Kumpera, A., Dardis, L., Rahn, J., O’Connor, J., Mitchell, M.: Real-time 16QAM transatlantic record spectral efficiency of 6.21 b/s/Hz enabling 26.2 Tbps capacity. In: Optical Fiber Communication Conference (OFC), OSA (2019)

  17. Maher, R., Croussore, K., Lauermann, M., Going, R., Xu, X., Rahn, J.: Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF. In: European Conference on Optical Communication (ECOC), IEEE (2017)

  18. Going, R., Lauermann, M., Maher, R., Tsai, H., Lu, M., Kim, N., Corzine, S., Studenkov, P., Summers, J., Hosseini, A., Zhang, J., Behnia, B., Tang, J., Buggaveeti, S., Vallaitis, T., Osenbach, J., Kuntz, M., Xu, X., Croussore, K., Lal, V., Evans, P., Rahn, J., Butrie, T., Karanicolas, A., Wu, K.-T., Mitchell, M., Ziari, M., Welch, D., Kish, F.: Multi-channel InP-based coherent PICs with hybrid integrated SiGe electronics operating up to 100 GBd, 32QAM. In: European Conference on Optical Communication (ECOC), IEEE (2017)

  19. Slovak, J., Herrmann, M., Schairer, W., Torrengo, E., Pulverer, K., Napoli, A., Hbel, U.: Aware optical networks: leaving the lab. J. Opt. Commun. Netw. 11, A134 (2018)

    Article  Google Scholar 

  20. Wu, X., Jargon, J., Skoog, R., Paraschis, L., Willner, A.: Applications of artificial neural networks in optical performance monitoring. J. Lightwave Technol. 27, 3580–3589 (2009)

    Article  Google Scholar 

  21. Morais, R.M., Pedro, J.: Machine learning models for estimating quality of transmission in DWDM networks. J. Opt. Commun. Netw. 10, D84 (2018)

    Article  Google Scholar 

  22. CenturyLink, Infinera, Company, T.: AI/ML and policy driven networks for the LSO-based architecture. https://mef19.com/index.php/proof-of-concept-showcase. Accessed 24 Nov 2019 (2019)

  23. Syed, S., Pugaczewski, J.: CenturyLink and Infinera: on the path toward the cognitive network. https://www.infinera.com/centurylink-and-infinera-on-the-path-toward-the-cognitive-network. Accessed 24 Mar 2019 (2018)

  24. Barroso, L.A., Hoelzle, U.: The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines, 1st edn. Morgan and Claypool Publishers, San Rafael (2009)

    Google Scholar 

  25. Gill, V.: Keynote talk—worse is better, June 2010. NANOG 49

  26. Sridharan, C.: The three pillars of observability. Distributed Systems Observability. O’Reilly Media, Inc., Newton (2018)

    Google Scholar 

  27. Sadasivarao, A., Syed, S., Panda, D., Gomes, P., Rao, R., Buset, J., Paraschis, L., Brar, J., Raj, K.: Demonstration of extensible threshold-based streaming telemetry for open DWDM analytics and verification. In: Optical Fiber Communication Conference (OFC), OSA (2020)

  28. Amazon AWS CloudFormation: https://aws.amazon.com/cloudformation/. Accessed 24 Nov 2019

  29. Scaling the Facebook backbone through Zero Touch Provisioning: https://engineering.fb.com/networking-traffic/scaling-the-facebook-backbone-through-zero-touch-provisioning/. Accessed 24 Nov 2019

  30. Open Networking Linux: http://opennetlinux.org/. Accessed 24 Nov 2019

  31. Khalidi, Y.: Software for open networking in the cloud (SONiC). https://azure.microsoft.com/en-us/blog/sonic-the-networking-switch-software-that-powers-the-microsoft-global-cloud/. Accessed 24 Nov 2019 (2017)

  32. Choi, S., Burkov, B., Eckert, A., Fang, T., Kazemkhani, S., Sherwood, R., Zhang, Y., Zeng, H.: Fboss: building switch software at scale. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’18, New York, NY, USA, pp. 342–356, ACM (2018)

  33. Wedge and FBOSS: https://engineering.fb.com/data-center-engineering/introducing-wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/. Accessed 24 Mar 2019

  34. An open approach for switching, routing, and transport: https://engineering.fb.com/connectivity/an-open-approach-for-switching-routing-and-transport/. Accessed 24 Mar 2019

  35. Ventorini, D., Moura, E., Paraschis, L., Gerstel, O., Silva, M., Wollenweber, K., Silverio, A.J., Junior, P.P.H., Silva, L.A.C.H.: Demonstration and evaluation of IP-over-DWDM networking as “alien-wavelength” over existing carrier DWDM infrastructure. In: OFC/NFOEC Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, IEEE (2008)

  36. Kamalov, V., Dangui, V., Hofmeister, T., Koley, B., Mitchell, C., Newland, M., O’Shea, J., Tomblin, C., Vusirikala, V., Zhao, X.: Lessons learned from open line system deployments. In: Optical Fiber Communication Conference (OFC), OSA (2017)

  37. Newland, M., Schmogrow, R., Cantono, M., Vusirikala, V., Hofmeister, T.: Open optical communication systems at a hyperscale operator. J. Opt. Commun. Netw. 12, C50 (2020)

    Article  Google Scholar 

  38. Kish, F., Lal, V., Evans, P., Corzine, S.W., Ziari, M., Butrie, T., Reffle, M., Tsai, H.-S., Dentai, A., Pleumeekers, J., Missey, M., Fisher, M., Murthy, S., Salvatore, R., Samra, P., Demars, S., Kim, N., James, A., Hosseini, A., Studenkov, P., Lauermann, M., Going, R., Lu, M., Zhang, J., Tang, J., Bostak, J., Vallaitis, T., Kuntz, M., Pavinski, D., Karanicolas, A., Behnia, B., Engel, D., Khayam, O., Modi, N., Chitgarha, M.R., Mertz, P., Ko, W., Maher, R., Osenbach, J., Rahn, J.T., Sun, H., Wu, K.-T., Mitchell, M., Welch, D.: System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24, 1–20 (2018)

    Article  Google Scholar 

  39. Paraschis, L., Bock, H., Kandappan, P., Sommerkorn-Krombholz, B., Pedro, J., Sadasivarao, A., Syed, S., Rahn, J., Doolan, P., Lu, B.: System innovations in inter data center transport networks. In: Optical Network Design and Modeling (ONDM), pp. 444–451. Springer (2020)

  40. Singh, R., Ghobadi, M., Foerster, K.-T., Filer, M., Gill, P.: RADWAN: rate adaptive wide area network. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM ’18, New York, NY, USA, pp. 547–560. ACM (2018)

  41. Filer, M., Gaudette, J., Yin, Y., Billor, D., Bakhtiari, Z., Cox, J.L.: Low-margin optical networking at cloud scale. J. Opt. Commun. Netw. 11, C94 (2019)

    Article  Google Scholar 

  42. Company, T.: Telia carrier and coriant demonstrate industry first control of fiber capacity with real-time optical awareness. https://www.teliacarrier.com/Press-room/Press-releases/Mar-13-2018.html. Accessed 24 Nov 2019 (2018)

  43. Infinera: Telia carrier and Infinera demonstrate industry-first autonomous intelligent transponder in live network field trial. https://www.infinera.com/telia-carrier-infinera-demonstrate-industry-first-autonomous-intelligent-transponder-live-network-field-trial. Accessed 24 Nov 2019 (2019)

  44. Paraschis, L., Kandappan, P., Sosa, M., Sadasivarao, A.: Proactive multi-layer mechanisms to protect packet-optical transport networks. US Patent 20180220210 (2017)

  45. Paraschis, L., Sardesai, H., Sadasivarao, A., Kandappan, P., Sosa, M.: Multi-layer mechanisms to optimize optical transport network margin allocation. US Patent 10542336 (2020)

  46. Sadasivarao, A., Bardhan, S., Syed, S., Lu, B., Paraschis, L.: Optonomic: architecture for secure autonomic optical transport networks. In: 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 321–328 (2019)

  47. Sung, Y.-W.E., Tie, X., Wong, S.H., Zeng, H.: Robotron: top-down network management at Facebook scale. In: Proceedings of the ACM SIGCOMM Conference, SIGCOMM ’16, New York, NY, USA, pp. 426–439. ACM (2016)

Download references

Acknowledgements

We would like to acknowledge insightful interactions related to this work with colleagues in the industry and academia, and especially Anders Lindgren and Stefan Melin at Telia Company, and Robert Maher and Steve Sanders at Infinera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhinava Shivakumar Sadasivarao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jeff Rahn and Biao Lu were at Infinera at the time of this work and are currently at Facebook.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paraschis, L., Bock, H., Sadasivarao, A. et al. System innovations in open WDM DCI networks. Photon Netw Commun 40, 269–280 (2020). https://doi.org/10.1007/s11107-020-00888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00888-7

Keywords