Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance evaluation of IRS-assisted one-bit control-based mixed FSO-RF communication system

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the performance of the novel one-bit control intelligent reflecting surface (IRS)-assisted mixed free-space optical (FSO)-radio frequency (RF) communication system, where an IRS is utilized over the RF hop to empower the end-to-end system performance. The FSO link is assumed to be affected by path loss, nonzero boresight pointing error, and atmospheric turbulence, which is modeled by generalized Malaga (\(\mathcal {M}\))-distribution, whereas the multipath fading in RF link is modeled by Nakagami-m distribution. In particular, unified closed-form expressions for the outage probability (OP), bit-error-rate (BER), and ergodic capacity (EC) are derived for optical heterodyne detection (OHD) and intensity modulation with direct detection (IMDD) techniques. We also derive the achievable diversity order of the considered IRS-assisted system by obtaining the asymptotic OP and asymptotic BER expressions. In addition, we derive the asymptotic EC of the considered system. The numerical results show that the proposed IRS-assisted system significantly outperforms the conventional mixed FSO-RF system without IRS. Moreover, the impact of the number of reflecting elements, practical reflection amplitude, and controlling mechanism at the IRS is studied on the system performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data availability is not applicable to this research. All the data could be created by the explained simulation technique.

Notes

  1. It can be noted that (9) contains infinite summation. For analytical tractability, it can be truncated to 10 terms with a convergence error of approximately \(10^{-4}\).

  2. Due to the assumption of decode-and-forward strategy at the relay node.

  3. Some useful results of double factorial function for computing the coefficients: \((2x - 1)!!= 1 \cdot 3\cdot 5...\,(2x - 1)\), \((2x)!!= 2 \cdot 4 \cdot 6...\,(2x)\), \(0!! = 1\), and \((-1)!!=1\) [25].

  4. Here, the analytical values of \(\mathbb {P}^{\text {RF}}\) have been obtained by numerically integrating (34).

  5. Here, the analytical values of \(\mathcal {J}_2\) term in the expression of \(\mathbb {C}^{\text {erg}}\) (defined in (40)) have been obtained by numerically integrating (43).

  6. Although, the authors in [17] have not considered OHD scheme at FSO receiver, we have simulated the existing IRS-assisted FSO-RF model with OHD scheme for the purpose of comparison.

References

  1. Bhatnagar, M.R., Ghassemlooy, Z.: Performance analysis of gamma-gamma fading FSO MIMO links with pointing errors. J. Lightwave Technol. 34(9), 2158–2169 (2016)

    Article  Google Scholar 

  2. Khalighi, M..A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commn. Surv. Tutor. 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  3. Zhu, X., Kahn, J.M.: Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50(8), 1293–1300 (2002)

    Article  Google Scholar 

  4. Ahdi, F., Subramaniam, S.: Optimal placement of FSO relays for network disaster recovery. In: Proceedings of the IEEE International Conference on Communications, pp. 3921–3926. Budapest, Hungary, IEEE (2013)

  5. Girdher, A., Bansal, A., Dubey, A.: On the performance of SLIPT-enabled DF relay-aided hybrid OW/RF network. IEEE Syst. J. 16(4), 5973–5984 (2022)

    Article  Google Scholar 

  6. Swaminathan, R., Sharma, S., Vishwakarma, N., Madhukumar, A.: Haps-based relaying for integrated space-air-ground networks with hybrid FSO/RF communication: a performance analysis. IEEE Trans. Aerosp. Electron. Syst. 57(3), 1581–1599 (2021)

    Article  Google Scholar 

  7. Zedini, E., Ansari, I.S., Alouini, M.S.: Performance analysis of mixed Nakagami-m and Gamma-Gamma dual-hop FSO transmission systems. IEEE Photonics J. 7(1), 1–20 (2015)

    Article  Google Scholar 

  8. Sharma, N., Bansal, A., Garg, P.: Relay selection in mixed RF/FSO system over generalized channel fading. Trans. Emerg. Telecommn. Technol. 28(4), e3010 (2017)

    Article  Google Scholar 

  9. Singhal, N., Bansal, A., Kumar, A.: Performance evaluation of DF based asymmetric SIMO-RF/FSO system with misalignment errors. IET Commun. 11(14), 2244–2252 (2017)

    Article  Google Scholar 

  10. Yang, L., Hasna, M.O., Ansari, I.S.: Unified performance analysis for multiuser mixed \(\eta\)-\(\mu\) and \(\cal{M}\)-distribution dual-hop RF/FSO systems. IEEE Trans. Commun. 65(8), 3601–3613 (2017)

    Google Scholar 

  11. Lei, H., Dai, Z., Ansari, I.S., Park, K., Pan, G., Alouini, M.S.: On secrecy performance of mixed RF-FSO systems. IEEE Photonics J. 9(4), 1–14 (2017)

    Article  Google Scholar 

  12. Wu, Q., Zhang, R.: Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans. Commun. 68(3), 1838–1851 (2020)

    Article  Google Scholar 

  13. Wu, Q., Zhang, R.: Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2020)

    Article  Google Scholar 

  14. Basar, E., Di Renzo, M., De Rosny, J., Debbah, M., Alouini, M., Zhang, R.: Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7, 116753–116773 (2019)

    Article  Google Scholar 

  15. Najafi, M., Schmauss, B., Schober, R.: Intelligent reconfigurable reflecting surfaces for free space optical communications, arXiv:2005.04499v1, (2020)

  16. Abeywickrama, S., Zhang, R., Yuen, C.: Intelligent reflecting surface: practical phase shift model and beamforming optimization. IEEE Trans. Commun. 68(9), 5849–5863 (2020)

    Article  Google Scholar 

  17. Yang, L., Guo, W., Ansari, I.S.: Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Commun. Lett. 24(7), 1558–1562 (2020)

    Article  Google Scholar 

  18. Sikri, A., Mathur, A., Saxena, P., Bhatnagar, M.R., Kaddoum, G.: Reconfigurable intelligent surface for mixed FSO-RF systems with co-channel interference. IEEE Commun. Lett. 25(5), 1605–1609 (2021)

    Article  Google Scholar 

  19. Verma, G.D., Mathur, A., Ai, Y., Cheffena, M.: Mixed dual-hop IRS-assisted FSO-RF communication system with H-ARQ protocols. IEEE Commun. Lett. 26(2), 384–388 (2021)

    Article  Google Scholar 

  20. Sikri, A., Mathur, A., Kaddoum, G.: Signal space diversity-based distributed RIS-aided dual-hop mixed RF-FSO systems. IEEE Commun. Lett. 26(5), 1066–1070 (2022)

    Article  Google Scholar 

  21. Uniyal, S., Vishwakarma, N., Sharma, S., Swaminathan, R.: Intelligent reflecting surfaces-aided mixed FSO, RF communication system. In: IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2023, 1–6 (2023)

  22. Pang, W., Wang, P., Han, M., Li, S., Yang, P., Li, G., Guo, L.: Optical intelligent reflecting surface for mixed dual-hop FSO and beamforming-based RF system in C-RAN. IEEE Trans. Wirel. Commun. 21(10), 8489–8506 (2022)

    Article  Google Scholar 

  23. Chapala, V.K., Zafaruddin, S.M.: Multiple RIS-assisted mixed FSO-RF transmission over generalized fading channels. IEEE Syst. J. 17(3), 3515–3526 (2023)

    Article  Google Scholar 

  24. Ansari, I.S., Yilmaz, F., Alouini, M.-S.: Performance analysis of free-space optical links over Malaga turbulence channels with pointing errors. IEEE Trans. Wirel. Commun. 15(1), 91–102 (2016)

    Article  Google Scholar 

  25. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 6th edn. Academic Press, New York (2000)

    Google Scholar 

  26. Jurado-Navas, A., Garrido-Balsells, J.M., Paris, J.F., Puerta-Notario, A., Awrejcewicz, J.: A unifying statistical model for atmospheric optical scintillation. Numer. Simul. Phys. Eng. Process. 181(8), 181–205 (2011)

    Google Scholar 

  27. (2001). Wolfram, The Wolfram functions site, [Online]. Champaign, IL, USA Available: http://functions.wolfram.com

  28. Ding, Z.: A simple design of IRS-NOMA transmission. IEEE Commun. Lett. 24(5), 1119–1123 (2020)

    Article  Google Scholar 

  29. Zeng, Y., Zhang, R.: Millimeter wave MIMO with lens antenna array: a new path division multiplexing paradigm. IEEE Trans. Commun. 64(4), 1557–1571 (2016)

    Article  Google Scholar 

  30. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, UK (2002)

    Google Scholar 

  31. Tegos, S.A., Tyrovolas, D., Diamantoulakis, P.D., Liaskos, C.K., Karagiannidis, G.K.: On the distribution of the sum of Double-Nakagami-\(m\) random vectors and application in randomly reconfigurable surfaces. IEEE Trans. Veh. Technol. 71(7), 7297–7307 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankur Bansal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A: Proof of Lemma 1

Considering the reflection amplitudes of each reflecting elements to be identical, i.e., \(|\varpi _i|=|\varpi |\), \(\forall i\), we can write (17) as \(\gamma _{D}(\textbf{f}_\ell )\!=\rho _R\left| W_\ell \right| ^2\), where

$$\begin{aligned}&W_{\ell }=\frac{1}{\sqrt{D}}\underbrace{\sum \limits _{i=(\ell -1)D+1}^{\ell D} \!H_ie^{j\psi _i}}_{D\,\text {Terms}}\nonumber \\&=\frac{1}{\sqrt{D}}\underbrace{\sum \limits _{j=0}^{ D-1}\! H_{(\ell -1)D+1+j}e^{j\psi _{(\ell -1)D+1+j}}}_{D\,\text {Terms}}, \end{aligned}$$
(47)

where \(j=i-(1-\ell )D-1\). Further, considering phase error as Generalized uniform distributed, obtaining the PDF of \(W_\ell\) becomes difficult. Therefore, we obtain a lower bound of the performance of an IRS-assisted by considering phase error to be distributed as \(U\sim (-\pi , \pi )\). Under, this assumption the PDF of \(W_\ell\) can be obtained from [31] with some RV transformation as

$$\begin{aligned} f_{|W_{\ell }|^2}(v)\!=\!\sum _{r_0=0}^{m_g-1}\cdots \sum _{r_{D-1}=0}^{m_g-1}\!\prod \limits _{j=0}^{ D-1}\!\mathbb {A}_j \frac{2\Xi ^{\frac{(\nu +1)}{2}}}{(\nu \!-\!1)!}v^{\frac{\nu -1}{2}} \;K_{\nu -1}\!\left( 2\sqrt{\Xi v}\right) , \end{aligned}$$
(48)

where \(\nu =D(m_g+ m_h-1)-\sum _{j=0}^{ D-1}r_j\), \(\mathbb {A}_j=\frac{(m_h)_{m_g-\!1-r_j}(1\!-\!m_h)_{r_j}}{(m_g\!-\!1\!-\!r_j)!r_j!}\), and \(\Xi =\frac{m_gm_hD}{\Omega _g\Omega _h}\). Moreover, the CDF of \(|W_{\ell }|^2\) can be derived by \(\int _{0}^{v}f_{|W_{\ell }|^2}(z)\,\mathrm{{d}}z\) along with the use of [25, Eq. 6.561.8] as

$$\begin{aligned} \mathbb {F}_{|W_{\ell }|^2}(v)\!=\!\sum _{r_0=0}^{m_g-1}\cdots \sum _{r_{D-1}=0}^{m_g-1}\prod \limits _{j=0}^{ D-1} \!\mathbb {A}_j\!\left[ \!1\!- \!\frac{2\Xi ^{\frac{\nu }{2}}}{(\nu \!-\!1)!}v^{\frac{\nu }{2}} \!\;K_{\nu }\!\left( 2\sqrt{\Xi v}\right) \right] , \end{aligned}$$
(49)

From the definition of \(W_{\ell }\) in (47) and the assumption of \(g_i\) and \(h_i\) following Nakagami-m distribution with parameters \(\left( m_g,\Omega _g/m_g\right)\) and \(\left( m_h,\Omega _h/m_h\right)\), respectively, it is straightforward to write that \(\mathbb {E}\left[ |W_{\ell }|^2\right] =\Omega _g \Omega _h\). Now we can write the CDF of \(\gamma _{D}(\mathbf {f_\ell })\) given in (16) as

$$\begin{aligned} \mathbb {F}_{\gamma _{D}(\textbf{f}_{\ell })}(\gamma )\!=\!\Pr \!\left\{ \rho _R|W_{\ell }|^2\le \gamma \right\} \!=\mathbb {F}_{|W_{\ell }|^2}\left( \frac{\gamma }{\rho _R}\right) . \end{aligned}$$
(50)

Using (49) in (50), we get (1).

Appendix B: Proof of Lemma 4

From (39) \(\mathcal {J}_1\) can be written as

$$\begin{aligned} \mathcal {J}_1=\mathbb {E}\left[ \ln {\left( 1+\Lambda \gamma ^{\text {FSO}}_q\right) }\right] =\mathbb {E}\left[ \ln {\left( 1+\Lambda \bar{\gamma }^{\text {FSO}}_qI^q\right) }\right] , \end{aligned}$$
(51)

where \(\mathbb {E}[\cdot ]\) is the mean operator. Since \(\ln {(1+x)}\approx \ln {(x)}\) when \(x\rightarrow \infty\), the asymptotic expression of \(\mathcal {J}_1\) in (51) considering high SNR conditions, i.e., \(\bar{\gamma }_q^{\text {FSO}} \rightarrow \infty\) can be accurately lower-bounded as follows

$$\begin{aligned} \lim _{\bar{\gamma }_q^{\text {FSO}}\rightarrow \infty }\mathcal {J}_1 = \tilde{\mathcal {J}_1}=\ln {\left( \bar{\gamma }^{\text {FSO}}_q\right) }+\frac{1}{\Lambda }\int _{0}^{\infty }\frac{\mathbb {F}'_{I^q}(i)}{i}\mathrm{{d}}i, \end{aligned}$$
(52)

where \(\mathbb {F}'_{I^q}(i)\) is the CCDF of \(I_q\) which can be obtained using (41) by linear transformation as \({\mathbb {F}}'_{I^q}(i)= \mathbb {F}'_{\gamma ^{\text {FSO}}_q}\left( \bar{\gamma }^{\text {FSO}}_qi\right)\). Further, utilizing [27, (07.34.21.0086.01)] in (52), we get (45). Further, \(\tilde{\mathcal {J}}_2=\lim _{\bar{\gamma }\rightarrow \infty }\mathcal {J}_2\), can be obtained from (43) by utilizing high SNR asymptotic expansion of Bessel function expression and then using [27, (07.34.21.0086.01)], we get (46).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girdher, A., Bansal, A., Bhatnagar, M.R. et al. Performance evaluation of IRS-assisted one-bit control-based mixed FSO-RF communication system. Photon Netw Commun 48, 1–17 (2024). https://doi.org/10.1007/s11107-024-01015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-024-01015-6

Keywords