Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Crop canopy spatial parameters are indicative of plant phenological growth stage and physiological condition, and their estimation is therefore of great interest for modeling and precision agriculture practices. Rapid increases in computing power have made stereovision models an attractive alternative to common single-image-based 2D methods, by allowing detailed estimation of the plant’s growth parameters regardless of imaging conditions. Models that have been proposed thus far are still limited in their application because of sensitivity to outdoor illumination conditions and the inherent difficulty in modeling complex plant shapes using only radiometric information. Assuming that not all of the plant-related pixels are essential for growth estimation, this study proposes a 3D reconstruction model that focuses on selected salient features on the plant surface, which are sufficient for obtaining growth characteristics. In addition, by introducing a hue-invariant model, the proposed algorithm shows robustness to diverse outdoor illumination conditions. The algorithm was tested under greenhouse and field conditions on corn, cotton, sunflower, tomato and black nightshade plants, from young seedlings to fully developed plant growth stages, and accurately estimated height (error ~4.5 %) and leaf cover area (error ~5 %). Furthermore, a strong correlation (r2 ~0.92) was found between the plant’s estimated volume and measured biomass, yielding an accurate biomass estimator in the validation tests (error ~4.5 %). This estimation ability remained stable while applying the model on plants with varying densities (overlapping leaves) and imaging setups where the standard 2D based analyses failed, thus showing the 3D modeling contribution to robust growth estimation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen, H. J., Reng, L., & Kirk, K. (2005). Geometric plant properties by relaxed stereo vision using simulated annealing. Computers and Electronics in Agriculture, 49(2), 219–232.

    Article  Google Scholar 

  • Berge, T., Aastveit, A., & Fykse, H. (2008). Evaluation of an algorithm for automatic detection of broad leaved weeds in spring cereals. Precision Agriculture, 9(6), 391–405.

    Article  Google Scholar 

  • Boegh, E., Soegaard, H., Broge, N., Hasager, C. B., Jensen, N. O., Schelde, K., et al. (2002). Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81(2–3), 179–193.

    Article  Google Scholar 

  • Donald, W. W. (2006). Estimated corn yields using either weed cover or rated control after pre-emergence herbicides. Weed Science, 54(2), 373–379.

    CAS  Google Scholar 

  • Ehlert, D., Adamek, R., & Horn, H. J. (2009). Laser rangefinder-based measuring of crop biomass under field conditions. Precision Agriculture, 10(5), 395–408.

    Article  Google Scholar 

  • Ehlert, D., & Dammer, K. H. (2006). Wide-scale testing of the Crop-Meter for site-specific farming. Precision Agriculture, 7(2), 101–115.

    Article  Google Scholar 

  • Ehlert, D., Heisig, M., & Adamek, R. (2010). Suitability of a laser rangefinder to characterize winter wheat. Precision Agriculture, 11(6), 650–663.

    Article  Google Scholar 

  • Ehlert, D., Horn, H., & Adamek, R. (2008). Measuring crop biomass density by laser triangulation. Computers and Electronics in Agriculture, 61(2), 117–125.

    Article  Google Scholar 

  • Ehsani, M. R., Upadhyaya, S. K., & Mattson, M. L. (2004). Seed location mapping using RTK-GPS. Transactions of the ASAE, 47(3), 909–914.

    Google Scholar 

  • Ephrath, J. E., Wang, R. F., Terashima, K., Hesketh, J. D., Huck, M. G., & Hummel, J. W. (1993). Shading effects on soybean and corn. Biotronics, 22, 15–24.

    Google Scholar 

  • Finlayson, G., Hordley, S., & Drew, M. (2002). Removing shadows from images. In Lecture notes in computer science: Vol. 2353. ECCV 2002: European conference on computer vision (pp. 823–836). Berlin: Springer.

  • Fusiello, A., Roberto, V., & Verri, A. (2000). Symmetric stereo with multiple windowing. International Journal of Pattern Recognition and Artificial Intelligence, 14(8), 1053–1066.

    Article  Google Scholar 

  • Gee, C. H., Bossu, J., Jones, G., & Truchetet, F. (2008). Crop/weed discrimination in perspective agronomic images. Computers and Electronics in Agriculture, 60(1), 49–59.

    Article  Google Scholar 

  • Griepentrog, H. W., Nørremark, M., Nielsen, H., & Blackmore, B. S. (2005). Seed mapping of sugar beet. Precision Agriculture, 6(2), 157–165.

    Article  Google Scholar 

  • Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553.

    Article  Google Scholar 

  • Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Fourth Alvey vision conference (pp. 147–151). Manchester, UK.

  • Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Hernández-Andrés, J., Lee, R. L., Jr, & Romero, J. (1999). Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Applied Optics, 38(27), 5703–5709.

    Article  PubMed  Google Scholar 

  • Jin, J., & Tang, L. (2009). Corn plant sensing using real-time stereo vision. Journal of Field Robotics, 26(6–7), 591–608.

    Article  CAS  Google Scholar 

  • Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., & Doran, J. W. (2003). Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agronomy Journal, 95(2), 303–315.

    Article  Google Scholar 

  • Kise, M., & Zhang, Q. (2008). Creating a panoramic field image using multi-spectral stereovision system. Computers and Electronics in Agriculture, 60(1), 67–75.

    Article  Google Scholar 

  • Kraus, K. (2007). Photogrammetry (2nd ed., Vol. 1). Bonn, Germany: Dümmler.

    Book  Google Scholar 

  • Lati, R. N., Filin, S., & Eizenberg, H. (2011). Robust methods for measurement of leaf cover area and biomass from image data. Weed Science, 59(2), 276–284.

    Article  CAS  Google Scholar 

  • Lindquist, J. L., & Knezevic, S. Z. (2001). Quantifying crop yield response to weed populations: Applications and limitations. In R. K. D. Peterson & L. G. Higley (Eds.), Biotic stress and yield loss (pp. 205–232). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant key points. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Malacara, D. (Ed.). (2002). Color vision and colorimetry, theory and applications. Bellingham, WA, USA: SPIE Press.

  • McCarthy, C. L., Hancock, N. H., & Raine, S. R. (2010). Applied machine vision of plants—a review with implications for field deployment in automated farming operations. Intelligent Service Robotics, 3(4), 209–217.

    Article  Google Scholar 

  • Meyer, G. E., & Davison, D. A. (1987). An electronic image plantgrowth measurement system. Transaction of the ASAE, 30(1), 242–248.

    Google Scholar 

  • Murphy, C., Lemerle, D., Jones, R., & Harden, S. (2002). Use of density to predict crop yield loss between variable seasons. Weed Research, 42(5), 377–384.

    Article  Google Scholar 

  • Ngouajio, M., Lemieux, C., Fortier, J. J., Careau, D., & Leroux, G. D. (1998). Validation of an operator-assisted module to measure weed and crop leaf cover by digital image analysis. Weed Technology, 12(3), 446–453.

    Google Scholar 

  • Ngouajio, M., Lemieux, C., & Leroux, G. D. (1999). Prediction of corn (Zea mays) yield loss from early observations of the relative leaf area and the relative leaf cover of weeds. Weed Science, 47(3), 297–304.

    CAS  Google Scholar 

  • Nørremark, M., Søgaard, H. T., Griepentrog, H. W., & Nielsen, H. (2007). Instrumentation and method for high accuracy geo-referencing of sugar beet plants. Computers and Electronics in Agriculture, 56(2), 130–146.

    Article  Google Scholar 

  • Pagés, J., Salvi, J., Collewet, C., & Forest, J. (2005). Optimized De Bruijn patterns for one-shot shape acquisition. Image and Vision Computing, 23(8), 707–720.

    Article  Google Scholar 

  • Piron, A., Leemans, V., Lebeau, F., & Destain, M. F. (2009). Improving in-row weed detection in multispectral stereoscopic images. Computers and Electronics in Agriculture, 69(1), 73–79.

    Article  Google Scholar 

  • Pollefeys, M., Nister, D., Frahm, J. M., Akbarzadeh, A., Mordohai, P., Clipp, B., et al. (2008). Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision, 78(2–3), 143–167.

    Article  Google Scholar 

  • Rasmussen, J., Norremark, M., & Bibby, B. M. (2007). Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Research, 47(4), 299–310.

    Article  Google Scholar 

  • Ruiz–Ruiz, G., Gómez-Gil, J., & Navas-Gracia, L. M. (2009). Testing different color spaces based on hue for the environmentally adaptive segmentation algorithm (EASA). Computers and Electronics in Agriculture, 68(1), 88–89.

    Article  Google Scholar 

  • Slaughter, D. C., Giles, D. K., & Downey, D. (2008). Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture, 61(1), 63–78.

    Article  Google Scholar 

  • Snavely, N., Seitz, S. M., & Szelinski, R. (2008). Modelling the world from internet photo collections. International Journal of Computer Vision, 80(2), 189–210.

    Article  Google Scholar 

  • Søgaard, H. T. (2005). Weed classification by active shape models. Biosystems Engineering, 93(3), 271–281.

    Article  Google Scholar 

  • Tang, L., & Tian, L. (2008a). Real-time crop row image reconstruction for automatic emerged corn plant spacing measurement. Transactions of the ASABE, 51(3), 1079–1087.

    Google Scholar 

  • Tang, L., & Tian, L. (2008b). Plant identification in mosaicked crop row images for automatic emerged corn plant spacing measurement. Transactions of the ASABE, 51(6), 2181–2191.

    Google Scholar 

  • Tian, L. F., & Slaughter, D. C. (1998). Environmentally adaptive segmentation algorithm for outdoor image segmentation. Computers and Electronics in Agriculture, 21(3), 153–168.

    Article  Google Scholar 

  • Van Evert, F. K., Polder, G., Van der Heijden, G., Kempenaar, C., & Lotz, L. A. P. (2009). Real-time vision-based detection of Rumex obtusifolius in grassland. Weed Research, 49(2), 164–174.

    Article  Google Scholar 

  • Xue, L., Cao, W., Luo, W., Dai, T., & Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. American Society of Agronomy, 96(1), 135–142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Nisim Lati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lati, R.N., Filin, S. & Eizenberg, H. Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points. Precision Agric 14, 586–605 (2013). https://doi.org/10.1007/s11119-013-9317-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-013-9317-6

Keywords