Abstract
A binary code is called ℤ4-linear if its quaternary Gray map preimage is linear. We show that the set of all quaternary linear Preparata codes of length n = 2m, m odd, m ≥ 3, is nothing more than the set of codes of the form \(\mathcal{H}_{\lambda ,\not \upsilon } + \mathcal{M}\) with
where T λ(⋅) and S ψ (⋅) are vector fields of a special form defined over the binary extended linear Hamming code H n of length n. An upper bound on the number of nonequivalent quaternary linear Preparata codes of length n is obtained, namely, \(2^{n\log _2 n}\). A representation for binary Preparata codes contained in perfect Vasil’ev codes is suggested.
Similar content being viewed by others
REFERENCES
Vasil’ev, Yu.L., On Nongroup Closely Packed Codes, Probl. Kibern., 1962, vol. 8, pp. 337–339.
Preparata, F.P., A Class of Optimum Nonlinear Double-Error-Correcting Codes, Inf. Control, 1968, vol. 13, no.4, pp. 378–400.
Dumer, I.I., Some New Uniformly Packed Codes, in Proc. Moscow Inst. Physics and Technology, Moscow, 1976, pp. 72–78.
Baker, R.D., van Lint, J.H., and Wilson R.M., On the Preparata and Goethals Codes, IEEE Trans. Inform. Theory, 1983, vol. 29, no.3, pp. 342–345.
Hammons, A.R., Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., and Sole, P., The ℤ 4-Linearity of Kerdock, Preparata, Goethals, and Related Codes, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 2, pp. 301–319.
Calderbank, A.R., Cameron, P.J., Kantor, W.M., and Seidel, J.J., ℤ4-Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line-Sets, Proc. London Math. Soc., 1997, vol. 75, pp. 436–480.
Tokareva, N.N., On Components of Preparata Codes, Probl. Peredachi Inf., 2004, vol. 40, no.2, pp. 63–69 [Probl. Inf. Trans. (Engl. Transl.), 2004, vol. 40, no. 2, pp. 159–164].
Vasil’ev, Yu.L., Vector Fields on the Vertex Set of the n-Dimensional Unit Cube, in Diskretnyi analiz (Discrete Analysis), Novosibirsk: Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1967, issue 11, pp. 21–59.
Krotov, D.S., Vector Fields, Preparata Codes, and Partitions of a Boolean Cube in Cylinders, in Proc. XII Int. Conf. on Problems of Theoretical Cybernetics, Nizhnii Novgorod, 1999, Moscow: Dept. Math. Mech. of Moscow State Univ., 1999, p. 122.
Krotov, D.S., On Diameter Perfect Constant-Weight Ternary Codes, Discrete Math., submitted.
Solov’eva, F.I., On Factorization of Code-Generating DNFs, Metody diskretnogo analiza v issledovanii funktsional’nykh sistem (Methods of Discrete Analysis in Studying Functional Systems), Novosibirsk: Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1988, vol. 47, pp. 66–88.
Avgustinovich, S.V. and Solov’eva, F.I., Construction of Perfect Binary Codes by Sequential Shifts of \({\tilde \alpha }\)-Components, Probl. Peredachi Inf., 1997, vol. 33, no.3, pp. 15–21 [Probl. Inf. Trans. (Engl. Transl.), 1997, vol. 33, no. 3, pp. 202–207].
Zaitsev, G.V., Zinoviev, V.A., and Semakov, N.V., Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes, Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, Armenia, USSR, 1971, Petrov, P.N. and Csaki, F., Eds., Budapest: Akad. Kiado, 1973, pp. 257–263.
Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., Uniformly Packed Codes, Probl. Peredachi Inf., 1971, vol. 7, no.1, pp. 38–50 [Probl. Inf. Trans. (Engl. Transl.), 1971, vol. 7, no. 1, pp. 30–39].
Kurlyandchik, Ya.M., On the Logarithmic Asymptotics of the Lenghth of a Maximal Cycle of Span r > 2, Metody diskretnogo analiza (Methods of Discrete Analysis), Novosibirsk: Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1971, vol. 19, pp. 48–55.
Avgustinovich, S.V., Solov’eva, F.I., and Heden, O., On Group of Symmetries of Vasil’ev Codes, in Proc. 9th Int. Workshop on Algebraic and Combinatorial Coding Theory, Kranevo, Bulgaria, 2004, pp. 27–33.
Borges, J., Phelps, K.T., Rifa, J., and Zinoviev, V.A., On ℤ4-Linear Preparata-like and Kerdock-like Codes, IEEE Trans. Inf. Theory, 2003, vol. 49, no.11, pp. 2834–2843.
Krotov, D.S., ℤ4-Linear Perfect Codes, Diskr. Analiz Issled. Operatsii, Ser. 1, 2000, vol. 7, no.4, pp. 78–90.
Krotov, D.S., ℤ4-Linear Hadamard and Extended Perfect Codes, in Proc. Int. Workshop on Coding and Cryptography, 2001, Paris, France, pp. 329–334.
Krotov, D.S., private communication, 2003.
Avgustinovich, S.V., Heden, O., and Solov’eva, F.I., The Classication of Some Perfect Codes, Research Rep. of the Royal Inst. of Technology, Dep. Math., Stockholm, Sweden, 2001, no. TRITA-MATH-2001-09.
Avgustinovich, S.V., Heden, O., and Solov’eva, F.I., The Classication of Some Perfect Codes, Des. Codes Cryptogr., 2004, vol. 31, no.3, pp. 313–318.
Wan, Z.-X., Quaternary Codes, Singapore: World Scientic, 1997.
Author information
Authors and Affiliations
Additional information
__________
Translated from Problemy Peredachi Informatsii, No. 2, 2005, pp. 50–62.
Original Russian Text Copyright © 2005 by Tokareva.
Supported in part by the Ministry of Education of the Russian Federation program “Development of the Scientific Potential of the Higher School,” project no. 512.
Rights and permissions
About this article
Cite this article
Tokareva, N.N. Representation of ℤ4-Linear Preparata Codes Using Vector Fields. Probl Inf Transm 41, 113–124 (2005). https://doi.org/10.1007/s11122-005-0016-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11122-005-0016-4