Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Representation of ℤ4-Linear Preparata Codes Using Vector Fields

  • Coding Theory
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

A binary code is called ℤ4-linear if its quaternary Gray map preimage is linear. We show that the set of all quaternary linear Preparata codes of length n = 2m, m odd, m ≥ 3, is nothing more than the set of codes of the form \(\mathcal{H}_{\lambda ,\not \upsilon } + \mathcal{M}\) with

$$\mathcal{H}_{\lambda ,\not \upsilon } = \{ y + T_\lambda (y) + S_{\not \upsilon } (y)|y \in H^n \} ,\quad \mathcal{M} = 2H^n ,$$

where T λ(⋅) and S ψ (⋅) are vector fields of a special form defined over the binary extended linear Hamming code H n of length n. An upper bound on the number of nonequivalent quaternary linear Preparata codes of length n is obtained, namely, \(2^{n\log _2 n}\). A representation for binary Preparata codes contained in perfect Vasil’ev codes is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Vasil’ev, Yu.L., On Nongroup Closely Packed Codes, Probl. Kibern., 1962, vol. 8, pp. 337–339.

    Google Scholar 

  2. Preparata, F.P., A Class of Optimum Nonlinear Double-Error-Correcting Codes, Inf. Control, 1968, vol. 13, no.4, pp. 378–400.

    Google Scholar 

  3. Dumer, I.I., Some New Uniformly Packed Codes, in Proc. Moscow Inst. Physics and Technology, Moscow, 1976, pp. 72–78.

  4. Baker, R.D., van Lint, J.H., and Wilson R.M., On the Preparata and Goethals Codes, IEEE Trans. Inform. Theory, 1983, vol. 29, no.3, pp. 342–345.

    Google Scholar 

  5. Hammons, A.R., Jr., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., and Sole, P., The ℤ 4-Linearity of Kerdock, Preparata, Goethals, and Related Codes, IEEE Trans. Inform. Theory, 1994, vol. 40, no. 2, pp. 301–319.

    Google Scholar 

  6. Calderbank, A.R., Cameron, P.J., Kantor, W.M., and Seidel, J.J., ℤ4-Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line-Sets, Proc. London Math. Soc., 1997, vol. 75, pp. 436–480.

    Google Scholar 

  7. Tokareva, N.N., On Components of Preparata Codes, Probl. Peredachi Inf., 2004, vol. 40, no.2, pp. 63–69 [Probl. Inf. Trans. (Engl. Transl.), 2004, vol. 40, no. 2, pp. 159–164].

    Google Scholar 

  8. Vasil’ev, Yu.L., Vector Fields on the Vertex Set of the n-Dimensional Unit Cube, in Diskretnyi analiz (Discrete Analysis), Novosibirsk: Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1967, issue 11, pp. 21–59.

    Google Scholar 

  9. Krotov, D.S., Vector Fields, Preparata Codes, and Partitions of a Boolean Cube in Cylinders, in Proc. XII Int. Conf. on Problems of Theoretical Cybernetics, Nizhnii Novgorod, 1999, Moscow: Dept. Math. Mech. of Moscow State Univ., 1999, p. 122.

    Google Scholar 

  10. Krotov, D.S., On Diameter Perfect Constant-Weight Ternary Codes, Discrete Math., submitted.

  11. Solov’eva, F.I., On Factorization of Code-Generating DNFs, Metody diskretnogo analiza v issledovanii funktsional’nykh sistem (Methods of Discrete Analysis in Studying Functional Systems), Novosibirsk: Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1988, vol. 47, pp. 66–88.

    Google Scholar 

  12. Avgustinovich, S.V. and Solov’eva, F.I., Construction of Perfect Binary Codes by Sequential Shifts of \({\tilde \alpha }\)-Components, Probl. Peredachi Inf., 1997, vol. 33, no.3, pp. 15–21 [Probl. Inf. Trans. (Engl. Transl.), 1997, vol. 33, no. 3, pp. 202–207].

    Google Scholar 

  13. Zaitsev, G.V., Zinoviev, V.A., and Semakov, N.V., Interrelation of Preparata and Hamming Codes and Extension of Hamming Codes to New Double-Error-Correcting Codes, Proc. 2nd Int. Symp. on Information Theory, Tsahkadsor, Armenia, USSR, 1971, Petrov, P.N. and Csaki, F., Eds., Budapest: Akad. Kiado, 1973, pp. 257–263.

    Google Scholar 

  14. Semakov, N.V., Zinoviev, V.A., and Zaitsev, G.V., Uniformly Packed Codes, Probl. Peredachi Inf., 1971, vol. 7, no.1, pp. 38–50 [Probl. Inf. Trans. (Engl. Transl.), 1971, vol. 7, no. 1, pp. 30–39].

    Google Scholar 

  15. Kurlyandchik, Ya.M., On the Logarithmic Asymptotics of the Lenghth of a Maximal Cycle of Span r > 2, Metody diskretnogo analiza (Methods of Discrete Analysis), Novosibirsk: Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 1971, vol. 19, pp. 48–55.

    Google Scholar 

  16. Avgustinovich, S.V., Solov’eva, F.I., and Heden, O., On Group of Symmetries of Vasil’ev Codes, in Proc. 9th Int. Workshop on Algebraic and Combinatorial Coding Theory, Kranevo, Bulgaria, 2004, pp. 27–33.

  17. Borges, J., Phelps, K.T., Rifa, J., and Zinoviev, V.A., On ℤ4-Linear Preparata-like and Kerdock-like Codes, IEEE Trans. Inf. Theory, 2003, vol. 49, no.11, pp. 2834–2843.

    Google Scholar 

  18. Krotov, D.S., ℤ4-Linear Perfect Codes, Diskr. Analiz Issled. Operatsii, Ser. 1, 2000, vol. 7, no.4, pp. 78–90.

    Google Scholar 

  19. Krotov, D.S., ℤ4-Linear Hadamard and Extended Perfect Codes, in Proc. Int. Workshop on Coding and Cryptography, 2001, Paris, France, pp. 329–334.

  20. Krotov, D.S., private communication, 2003.

  21. Avgustinovich, S.V., Heden, O., and Solov’eva, F.I., The Classication of Some Perfect Codes, Research Rep. of the Royal Inst. of Technology, Dep. Math., Stockholm, Sweden, 2001, no. TRITA-MATH-2001-09.

  22. Avgustinovich, S.V., Heden, O., and Solov’eva, F.I., The Classication of Some Perfect Codes, Des. Codes Cryptogr., 2004, vol. 31, no.3, pp. 313–318.

    Google Scholar 

  23. Wan, Z.-X., Quaternary Codes, Singapore: World Scientic, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Problemy Peredachi Informatsii, No. 2, 2005, pp. 50–62.

Original Russian Text Copyright © 2005 by Tokareva.

Supported in part by the Ministry of Education of the Russian Federation program “Development of the Scientific Potential of the Higher School,” project no. 512.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokareva, N.N. Representation of ℤ4-Linear Preparata Codes Using Vector Fields. Probl Inf Transm 41, 113–124 (2005). https://doi.org/10.1007/s11122-005-0016-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11122-005-0016-4

Keywords