Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bang–Bang Refocusing of a Qubit Exposed to Telegraph Noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Solid state qubits promise the great advantage of being naturally scalable to large quantum computer architectures, but they also possess the significant disadvantage of being intrinsically exposed to many sources of noise in the macroscopic solid-state environment. With suitably chosen systems such as superconductors, many of sources of noise can be suppressed. However, imprecision in nanofabrication will inevitably induce defects and disorder, such as charged impurities in the device material or substrate. Such defects generically produce telegraph noise and can hence be modelled as bistable fluctuators. We demonstrate the possibility of the active suppression of such telegraph noise by bang–bang control through an exhaustive study of a qubit coupled to a single bistable fluctuator. We use a stochastic Schrödinger equation, which is solved both numerically and analytically. The resulting dynamics can be visualized as diffusion of a spin vector on the Bloch sphere. We find that bang–bang control suppresses the effect of a bistable fluctuator by a factor roughly equalling the ratio of the bang–bang period and the typical fluctuator period. Therefore, we show the bang–bang protocol works essentially as a high pass filter on the spectrum of such telegraph noise sources. This suggests how the influence of 1/f-noise ubiquitous to the solid state world could be reduced, as it is typically generated by an ensemble of bistable fluctuators. Finally, we develop random walk models that estimate the level of noise suppression resulting from imperfect bang–bang operations, such as those that cannot be treated as δ-function impulses and those that have phase and axis errors.

PACS: 03.65.Yz, 03.67.Lx, 05.40.-a

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

    Google Scholar 

  2. D. Vion et al., Science 296, 886 (2002).

    Google Scholar 

  3. I. Chioresco, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

    Google Scholar 

  4. J. M. Martinis, S.W. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117907 (2002).

    Google Scholar 

  5. Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).

    Google Scholar 

  6. Yu. Makhlin, G. Sch¨on, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).

    Google Scholar 

  7. C. van der Wal, F. Wilhelm, C. Harmans, and J. Mooij, Eur. Phys. J.B 31, 111 (2003).

    Google Scholar 

  8. R. Wakai and D. van Harlingen, Phys. Rev. Lett. 58, 1687 (1987).

    Google Scholar 

  9. N. M. Zimmermann, J. L. Cobb, and A. F. Clark, Phys. Rev. B 56, 7675 (1997).

    Google Scholar 

  10. M. B. Weissmann, Rev. Mod. Phys. 60, 537 (1988).

    Google Scholar 

  11. A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

    Google Scholar 

  12. Yu. Makhlin, G. Sch¨on, and A. Shnirman, Phys. Scr. T 102, 147 (2002).

    Google Scholar 

  13. U. Weiss, Quantum Dissipative Systems(World Scientific, Singapore, 2001).

    Google Scholar 

  14. H. Gassmann, F. Marquardt, and C. Bruder, Phys. Rev. E 66, 041111 (2002).

    Google Scholar 

  15. N. Prokov'ef and P. Stamp, Rep. Prog. Phys. 63, 669 (2000).

    Google Scholar 

  16. T. Ytakura and Y. Tokura, Dephasing due to background charge fluctuations, ISSP Int. Workshop "Quantum transport in mesoscopic scale and low dimensions", (2003).

  17. Y. M. Galperin, B. L. Altshuler, and D. V. Shantsev, Low-frequency noise as a source of dephasing of a qubit, Proc. of NATO/Euresco Conf. "Fundamental problems of mesoscopic physics: Interaction and decoherence", Granada, Spain, (2003), NATO Science Series.

  18. P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497 (1981).

    Google Scholar 

  19. J. M. Martinis et al., Phys. Rev.B 67, 094510 (2003).

  20. S. Lloyd and L. Viola, Phys. Rev. A 58, 2733 (1998).

    Google Scholar 

  21. S. Lloyd, E. Knill, and Viola, Phys. Rev. Lett. 82, 2417 (1999).

    Google Scholar 

  22. S. Lloyd, E. Knill, and L. Viola, Phys. Rev. Lett. 83, 4888 (1999).

    Google Scholar 

  23. L. Arnold, stochastische Differentialgleichungen(Oldenbourg, M¨unchen, 1973).

  24. N. G. van Kampen, Stochastic Processes in Physics and Chemistry(Elsevier, Amsterdam, 1997).

    Google Scholar 

  25. H. Carr and E. Purcell, Phys. Rev. 94, 630 (1954).

    Google Scholar 

  26. G. H. Weiss, Aspects and Applications of the Random Walk(North-Holland, Amsterdam, 1994).

    Google Scholar 

  27. The attentive reader might object that a spin-flip around a different axis on the xy equator doesn't commute with pure \(\hat \sigma \) x -dynamics, but rather with something nearby. As we do not consider any \(\hat \sigma \) y -components yet, we do not bother about the minimal distortion of pure \(\hat \sigma \) x -manipulations, which can be estimated to be on the 2nd order of the aberration parameter iδφ 0 that we assumed to be very small anyway.

  28. H. Gutmann, F.K. Wilhelm, W.M. Kaminsky, and S. Lloyd, cond-mat/0308107.

  29. K. Rabenstein, V. A. Sverdlov, and D. V. Averin, JETP Vol. 79is. 12, 783

  30. L. Faoro and L. Viola, quant-ph/0312159.

  31. G. Falci, A. D'Arrigo, A. Mastellone, and E. Paladino, cond-mat/0312442.

  32. E. Paladino, L. Faoro, and G. Falci, cond-mat/0312411.

  33. E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev. Lett. 88, 228304 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutmann, H., Wilhelm, F.K., Kaminsky, W.M. et al. Bang–Bang Refocusing of a Qubit Exposed to Telegraph Noise. Quantum Information Processing 3, 247–272 (2004). https://doi.org/10.1007/s11128-004-2223-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-004-2223-0