Abstract
Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (C k NOT) neutral atom gate. This gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only 2k + 3 or 5 Rydberg π pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for k = 35.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)
Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)
Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)
Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)
Zhang X.L., Isenhower L., Gill A.T., Walker T.G., Saffman M.: Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A 82, 030306(R) (2010)
Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)
Saffman M., Walker T.G., Mølmer K.: Elementary gates for quantum computation. Rev. Mod. Phys. 82, 2313 (2010)
Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Quantum computation and quantum information. Phys. Rev. A 52, 3457 (1995)
Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Lukin M.D., Fleischhauer M., Cote R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)
Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)
Møller D., Madsen L.B., Mølmer K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)
Müller M., Lesanovsky I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)
Saffman M., Mølmer K.: Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009)
Weimer H., Müller M., Lesanovsky I., Zoller P., Büchler H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010)
Maslov D., Dueck G.: Improved quantum cost for n-bit Toffoli gates. Electron. Lett. 39, 1790 (2003)
Shende V.V., Markov I.L.: On the CNOT-cost of Toffoli gates. Quantum Inf. Comput. 9, 0461 (2009)
Mølmer, K., Isenhower, L., Saffman, M.: Efficient Grover search with Rydberg blockade. J. Phys B. arXiv:1102.3573, to appear (2011)
Brion E., Mouritzen A.S., Mølmer K.: Conditional dynamics induced by new configurations for Rydberg dipoledipole interactions. Phys. Rev. A 76, 022334 (2007)
Saffman M., Zhang X.L., Gill A.T., Isenhower L., Walker T.G.: Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser. 264, 012023 (2011)
Saffman M., Walker T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)
Saffman M., Mølmer K.: Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in Holmium atoms. Phys. Rev. A 78, 012336 (2008)
Walker T.G., Saffman M.: Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77, 032723 (2008)
Knill E., Leibfried D., Reichle R., Britton J., Blakestad R.B., Jost J.D., Langer C., Ozeri R., Seidelin S., Wineland D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)
Benhelm J., Kirchmair G., Roos C.F., Blatt R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)
Pohl T., Berman P.R.: Breaking the dipole blockade: nearly resonant dipole interactions in few-atom systems. Phys. Rev. Lett. 102, 013004 (2009)
Beterov I.I., Ryabtsev I.I., Tretyakov D.B., Entin V.M.: Quasiclassical calculations of blackbody-radiationinduced depopulation rates and effective lifetimes of Rydberg ns, np, and nd alkali-metal atoms with n <= 80. Phys. Rev. A 79, 052504 (2009)
Roos I., Mølmer K.: Quantum computing with an inhomogeneously broadened ensemble of ions: suppression of errors from detuning variations by specially adapted pulses and coherent population trapping. Phys. Rev. A 69, 022321 (2004)
Bohlouli-Zanjani P., Petrus J.A., Martin J.D.D.: Enhancement of Rydberg atom interactions using ac stark shifts. Phys. Rev. Lett. 98, 203005 (2007)
Knill E.: Quantum computing with realistically noisy devices. Nature (London) 434, 39 (2005)
Wang D.S., Fowler A.G., Hollenberg L.C.L.: Surface code quantum computing with error rates over 1%. Phys. Rev. A 83, 020302 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Isenhower, L., Saffman, M. & Mølmer, K. Multibit C k NOT quantum gates via Rydberg blockade. Quantum Inf Process 10, 755 (2011). https://doi.org/10.1007/s11128-011-0292-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-011-0292-4