Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Multibit C k NOT quantum gates via Rydberg blockade

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Long range Rydberg blockade interactions have the potential for efficient implementation of quantum gates between multiple atoms. Here we present and analyze a protocol for implementation of a k-atom controlled NOT (C k NOT) neutral atom gate. This gate can be implemented using sequential or simultaneous addressing of the control atoms which requires only 2k + 3 or 5 Rydberg π pulses respectively. A detailed error analysis relevant for implementations based on alkali atom Rydberg states is provided which shows that gate errors less than 10% are possible for k = 35.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Viteau M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  2. Urban E., Johnson T.A., Henage T., Isenhower L., Yavuz D.D., Walker T.G., Saffman M.: Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110 (2009)

    Article  Google Scholar 

  3. Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  4. Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  5. Zhang X.L., Isenhower L., Gill A.T., Walker T.G., Saffman M.: Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A 82, 030306(R) (2010)

    ADS  Google Scholar 

  6. Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208 (2000)

    Article  ADS  Google Scholar 

  7. Saffman M., Walker T.G., Mølmer K.: Elementary gates for quantum computation. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  8. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Quantum computation and quantum information. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  9. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Lukin M.D., Fleischhauer M., Cote R., Duan L.M., Jaksch D., Cirac J.I., Zoller P.: Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  Google Scholar 

  11. Brion E., Mølmer K., Saffman M.: Quantum computing with collective ensembles of multilevel systems. Phys. Rev. Lett. 99, 260501 (2007)

    Article  ADS  Google Scholar 

  12. Møller D., Madsen L.B., Mølmer K.: Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100, 170504 (2008)

    Article  Google Scholar 

  13. Müller M., Lesanovsky I., Weimer H., Büchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  Google Scholar 

  14. Saffman M., Mølmer K.: Efficient multiparticle entanglement via asymmetric Rydberg blockade. Phys. Rev. Lett. 102, 240502 (2009)

    Article  ADS  Google Scholar 

  15. Weimer H., Müller M., Lesanovsky I., Zoller P., Büchler H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382 (2010)

    Article  Google Scholar 

  16. Maslov D., Dueck G.: Improved quantum cost for n-bit Toffoli gates. Electron. Lett. 39, 1790 (2003)

    Article  Google Scholar 

  17. Shende V.V., Markov I.L.: On the CNOT-cost of Toffoli gates. Quantum Inf. Comput. 9, 0461 (2009)

    MathSciNet  Google Scholar 

  18. Mølmer, K., Isenhower, L., Saffman, M.: Efficient Grover search with Rydberg blockade. J. Phys B. arXiv:1102.3573, to appear (2011)

  19. Brion E., Mouritzen A.S., Mølmer K.: Conditional dynamics induced by new configurations for Rydberg dipoledipole interactions. Phys. Rev. A 76, 022334 (2007)

    Article  ADS  Google Scholar 

  20. Saffman M., Zhang X.L., Gill A.T., Isenhower L., Walker T.G.: Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser. 264, 012023 (2011)

    Article  ADS  Google Scholar 

  21. Saffman M., Walker T.G.: Analysis of a quantum logic device based on dipole-dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  22. Saffman M., Mølmer K.: Scaling the neutral-atom Rydberg gate quantum computer by collective encoding in Holmium atoms. Phys. Rev. A 78, 012336 (2008)

    Article  ADS  Google Scholar 

  23. Walker T.G., Saffman M.: Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms. Phys. Rev. A 77, 032723 (2008)

    Article  ADS  Google Scholar 

  24. Knill E., Leibfried D., Reichle R., Britton J., Blakestad R.B., Jost J.D., Langer C., Ozeri R., Seidelin S., Wineland D.J.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)

    Article  ADS  Google Scholar 

  25. Benhelm J., Kirchmair G., Roos C.F., Blatt R.: Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463 (2008)

    Article  Google Scholar 

  26. Pohl T., Berman P.R.: Breaking the dipole blockade: nearly resonant dipole interactions in few-atom systems. Phys. Rev. Lett. 102, 013004 (2009)

    Article  ADS  Google Scholar 

  27. Beterov I.I., Ryabtsev I.I., Tretyakov D.B., Entin V.M.: Quasiclassical calculations of blackbody-radiationinduced depopulation rates and effective lifetimes of Rydberg ns, np, and nd alkali-metal atoms with n <= 80. Phys. Rev. A 79, 052504 (2009)

    Article  ADS  Google Scholar 

  28. Roos I., Mølmer K.: Quantum computing with an inhomogeneously broadened ensemble of ions: suppression of errors from detuning variations by specially adapted pulses and coherent population trapping. Phys. Rev. A 69, 022321 (2004)

    Article  ADS  Google Scholar 

  29. Bohlouli-Zanjani P., Petrus J.A., Martin J.D.D.: Enhancement of Rydberg atom interactions using ac stark shifts. Phys. Rev. Lett. 98, 203005 (2007)

    Article  ADS  Google Scholar 

  30. Knill E.: Quantum computing with realistically noisy devices. Nature (London) 434, 39 (2005)

    Article  ADS  Google Scholar 

  31. Wang D.S., Fowler A.G., Hollenberg L.C.L.: Surface code quantum computing with error rates over 1%. Phys. Rev. A 83, 020302 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenhower, L., Saffman, M. & Mølmer, K. Multibit C k NOT quantum gates via Rydberg blockade. Quantum Inf Process 10, 755 (2011). https://doi.org/10.1007/s11128-011-0292-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0292-4

Keywords