Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Security of ping-pong protocol based on pairs of completely entangled qudits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secure direct communication protocols offer confidential transmission of classic information over quantum channel without prior key agreement. The ping-pong based protocols provide asymptotic security and detailed analysis of security level provided by each variant of the protocol is required. The paper presents a general method of calculation of the eavesdropped information as a function of the attack detection probability. The method is applied to the ping-pong protocol based on completely entangled pairs of qudits. The upper and lower bounds on the amount of the leaked information and eavesdropping detection probability are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bechmann-Pasquinucci H., Peres A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85(15), 3313–3316 (2000). doi:10.1103/PhysRevLett.85.3313

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Beige A., Englert B.G., Kurtsiefer Ch., Weinfurter H.: Secure communication with a publicly known key. Act. Phys. Pol. 101(3), 357–368 (2002)

    Article  MATH  Google Scholar 

  3. Bengtsson, I.: Three ways to look at mutually unbiased bases. quant-ph/0610216v1 (2006)

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of International Conference on Computers, Systems and Signal Processing, pp. 175–179. New York (1984)

  5. Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187–902 (2002). doi:10.1103/PhysRevLett.89.187902

    Article  Google Scholar 

  6. Boström K., Felbinger T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Cai Q.Y., Li B.W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69(5), 054–301 (2004). doi:10.1103/PhysRevA.69.054301

    Article  Google Scholar 

  8. Chamoli A., Bhandari C.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8, 347–356 (2009). doi:10.1007/s11128-009-0112-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng F.G., Long G.L.: Quantum privacy amplification for a sequence of single qubits. Commun. Theor. Phys. 46(3), 443 (2006)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21(11), 2097–2100 (2004). URL:http://cpl.iphy.ac.cn/qikan/manage/wenzhang/0212097.pdf

  11. Durt T., Kaszlikowski D., Chen J.L., Kwek L.C.: Security of quantum key distributions with entangled qudits. Phys. Rev. A 69(3), 032–313 (2004). doi:10.1103/PhysRevA.69.032313

    Article  Google Scholar 

  12. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). doi:10.1103/PhysRevLett.67.661

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Gao T., Yan F.L., Wang Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A Math. Gen. 38(25), 5761 (2005). doi:10.1088/0305-4470/38/25/011

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Keyl M.: Fundamentals of quantum information theory. Phys. Rep. 369(5), 431–548 (2002). doi:10.1016/S0370-1573(02)00266-1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Korchenko, O., Vasiliu, Y., Gnatyuk, S.: Modern quantum technologies of information security against cyberterrorist attacks. Aviation 14(2), 58–69 (2010). doi:10.3846/aviation.2010.10 URL:http://arxiv.org/abs/1005.5553

  16. Liu X.S., Long G.L., Tong D.M., Li F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65(2), 022–304 (2002). doi:10.1103/PhysRevA.65.022304

    Google Scholar 

  17. Long G.l., Deng F.g., Wang C., Li X.h., Wen K., Wang W.y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007). doi:10.1007/s11467-007-0050-3

    Article  ADS  Google Scholar 

  18. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002). doi:10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  19. Ostermeyer, M., Walenta, N.: On the implementation of a deterministic secure coding protocol using polarization entangled photons. Opt. Commun. 281(17), 4540–4544 (2008). doi:10.1016/j.optcom.2008.04.068. URL: http://quant-ph/0703242v2.

  20. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978). doi:10.1145/359340.359342. URL:http://theory.lcs.mit.edu/rivest/rsapaper.pdf

  21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997). URL:http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/9508027

  22. Vasiliu, E.V.: Asymptotic security of the ping-pong quantum direct communication protocol with three-qubit Greenberger-Horne-Zeilinger states. Georgian Elec. Sci. J. Comput. Sci. Telecomm. 3(20), 3–15 (2009). URL:http://gesj.internet-academy.org.ge/gesj_articles/1427.pdf

  23. Vasiliu E.V.: Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10, 189–202 (2011). doi:10.1007/s11128-010-0188-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005). doi:10.1103/PhysRevA.71.044305

    Article  ADS  Google Scholar 

  25. Wójcik A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157–901 (2003)

    Article  Google Scholar 

  26. Yang Y.G., Teng Y.W., Chai H.P., Wen Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol. Quantum Inf. Process. (2010). doi:10.1007/s11128-010-0199-5

  27. Zawadzki P.: A fine estimate of quantum factorization success probability. Int. J. Quantum Inf. 8(8), 1233–1238 (2010). doi:10.1142/S0219749910006940

    Article  MATH  Google Scholar 

  28. Zawadzki P.: Numerical estimation of the quantum factorization effectiveness. Theor. Appl. Inf. 22(1), 63–72 (2010)

    Google Scholar 

  29. Zhang Z., Man Z., Li Y.: Improving Wójciks eavesdropping attack on the ping-pong protocol. Phys. Lett. A 333, 46–50 (2004). doi:10.1016/j.physleta.2004.10.025

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Zawadzki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zawadzki, P. Security of ping-pong protocol based on pairs of completely entangled qudits. Quantum Inf Process 11, 1419–1430 (2012). https://doi.org/10.1007/s11128-011-0307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0307-1

Keywords