Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Public and private resource trade-offs for a quantum channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

An Erratum to this article was published on 07 August 2012

Abstract

Collins and Popescu realized a powerful analogy between several resources in classical and quantum information theory. The Collins–Popescu analogy states that public classical communication, private classical communication, and secret key interact with one another somewhat similarly to the way that classical communication, quantum communication, and entanglement interact. This paper discusses the information-theoretic treatment of this analogy for the case of noisy quantum channels. We determine a capacity region for a quantum channel interacting with the noiseless resources of public classical communication, private classical communication, and secret key. We then compare this region with the classical-quantum-entanglement region from our prior efforts and explicitly observe the information-theoretic consequences of the strong correlations in entanglement and the lack of a super-dense coding protocol in the public-private-secret-key setting. The region simplifies for several realistic, physically-motivated channels such as entanglement-breaking channels, Hadamard channels, and quantum erasure channels, and we are able to compute and plot the region for several examples of these channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahlswede R., Csiszár I.: Common randomness in information theory and cryptography—Part I: secret sharing. IEEE Trans. Inf. Theory 39, 1121–1132 (1993)

    Article  MATH  Google Scholar 

  2. Ahlswede R., Csiszár I.: Common randomness in information theory and cryptography—Part II: CR-capacity. IEEE Trans. Inf. Theory 44, 225–240 (1998)

    Article  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)

  4. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of quantum erasure channels. Phys. Rev. Lett. 78(16), 3217–3220 (1997). doi:10.1103/PhysRevLett.78.3217

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Bennett C.H., Wiesner S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). url:http://www.stanford.edu/~boyd/cvxbook/

  8. Brádler K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inf. Theory. 57, 5497–5503 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brádler K., Dutil N., Hayden P., Muhammad A.: Conjugate degradability and the quantum capacity of cloning channels. J. Math. Phys. 51, 072201 (2010). doi:10.1063/1.3449555

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Brádler, K., Hayden, P., Panangaden, P.: Private information via the Unruh effect. J. High Energy Phys. 2009(08), 074 (2009). url:http://stacks.iop.org/1126-6708/2009/i=08/a=074

  11. Brádler K., Hayden P., Touchette D., Wilde M.M.: Trade-off capacities of the quantum Hadamard channels. Phys. Rev. A 81(6), 062312 (2010)

    Article  ADS  Google Scholar 

  12. Brito, F., DiVincenzo, D.P., Koch, R.H., Steffen, M.: Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit. New J. Phys. 10(3), 033,027 (2008). url:http://stacks.iop.org/1367-2630/10/033027

  13. Cai N., Winter A., Yeung R.W.: Quantum privacy and quantum wiretap channels. Prob. Inf. Transm. 40(4), 318–336 (2004). doi:10.1007/s11122-005-0002-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Collins D., Popescu S.: Classical analog of entanglement. Phys. Rev. A 65(3), 032,321 (2002). doi:10.1103/PhysRevA.65.032321

    Article  Google Scholar 

  15. Csiszár I., Körner J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Devetak I., Shor P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Devetak I., Winter A.: Relating quantum privacy and quantum coherence: an operational approach. Phys. Rev. Lett. 93, 080,501 (2004)

    Article  Google Scholar 

  19. Devetak I., Winter A.: Distillation of secret key and entanglement from quantum states. Proc. Roy. Soc. A 461, 207–235 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Duan, R., Grassl, M., Ji, Z., Zeng, B.: Multi-error-correcting amplitude damping codes. In: Proceedings of the International Symposium on Information Theory. Austin, Texas, USA (2010). ArXiv:1001.2356

  21. Gingrich R.M., Kok P., Lee H., Vatan F., Dowling J.P.: All linear optical quantum memory based on quantum error correction. Phys. Rev. Lett. 91(21), 217,901 (2003). doi:10.1103/PhysRevLett.91.217901

    Article  Google Scholar 

  22. Gisin N., Massar S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79(11), 2153–2156 (1997). doi:10.1103/PhysRevLett.79.2153

    Article  ADS  Google Scholar 

  23. Grassl M., Beth T., Pellizzari T.: Codes for the quantum erasure channel. Phys. Rev. A 56(1), 33–38 (1997). doi:10.1103/PhysRevA.56.33

    Article  MathSciNet  ADS  Google Scholar 

  24. Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horodecki M., Shor P.W., Ruskai M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003) ArXiv:quant-ph/0302031

    Article  MathSciNet  MATH  Google Scholar 

  26. Hsieh M.H., Devetak I., Winter A.: Entanglement-assisted capacity of quantum multiple-access channels. IEEE Trans. Inf. Theory 54(7), 3078–3090 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hsieh M.H., Luo Z., Brun T.: Secret-key-assisted private classical communication capacity over quantum channels. Phys. Rev. A 78(4), 042306 (2008). doi:10.1103/PhysRevA.78.042306

    Article  ADS  Google Scholar 

  28. Hsieh M.H., Wilde M.M.: Public and private communication with a quantum channel and a secret key. Phys. Rev. A 80(2), 022,306 (2009). doi:10.1103/PhysRevA.80.022306

    Article  Google Scholar 

  29. Hsieh, M.H., Wilde, M.M.: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, vol. 5906, Chap. Optimal Trading of Classical Communication, Quantum Communication, and Entanglement, pp. 85–93. Springer (2009)

  30. Hsieh M.H., Wilde M.M.: Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans. Inf. Theory 56(9), 4705–4730 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hsieh M.H., Wilde M.M.: Entanglement-assisted communication of classical and quantum information. IEEE Trans. Inf. Theory 56(9), 4682–4704 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. King C., Matsumoto K., Nathanson M., Ruskai M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Process. Relat. Fields 13(2), 391–423 (2007) J. T. Lewis memorial issue

    MathSciNet  MATH  Google Scholar 

  33. Korbicz J.K., Almeida M.L., Bae J., Lewenstein M., Acín A. (2008) Structural approximations to positive maps and entanglement-breaking channels. Phys. Rev. A 78(6), 062,105. doi:10.1103/PhysRevA.78.062105

  34. Lamas-Linares A., Simon C., Howell J.C., Bouwmeester D.: Experimental quantum cloning of single photons. Science 296, 712–714 (2002)

    Article  ADS  Google Scholar 

  35. Lu C.Y., Gao W.B., Zhang J., Zhou X.Q., Yang T., Pan J.W.: Experimental quantum coding against qubit loss error. Proc. Natl. Acad. Sci. USA 105(32), 11,050–11,054 (2008)

    Article  Google Scholar 

  36. Maurer U.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39, 733–742 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Milonni P.W., Hardies M.L.: Photons cannot always be replicated. Phys. Lett. A 92(7), 321–322 (1982)

    Article  ADS  Google Scholar 

  38. Minkel, J.R.: Space Station Could Beam Secret Quantum Codes by 2014. Scientific American (2008). http://www.scientificamerican.com/article.cfm?id=space-station-could-beam&sc=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+ScientificAmerican-News+%2528Scientific+American+-+News%2529

  39. Chruściński D., Pytel J., Sarbicki G.: Constructing optimal entanglement witnesses. Phys. Rev. A 80(6), 062,314 (2009). doi:10.1103/PhysRevA.80.062314

    Article  Google Scholar 

  40. Scarani V., Bechmann-Pasquinucci H., Cerf N.J., Dušek M., Lütkenhaus N., Peev M.: The security of practical quantum key distribution. Rev. Modern Phys. 81(3), 1301–1350 (2009). doi:10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  41. Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997)

    Article  ADS  Google Scholar 

  42. Schumacher B., Westmoreland M.D.: Quantum privacy and quantum coherence. Phys. Rev. Lett. 80(25), 5695–5697 (1998). doi:10.1103/PhysRevLett.80.5695

    Article  ADS  Google Scholar 

  43. Shor, P.W.: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43(9), 4334–4340 (2002). doi:10.1063/1.1498000. url:http://link.aip.org/link/?JMP/43/4334/1

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Simon C., Weihs G., Zeilinger A.: Optimal quantum cloning via stimulated emission. Phys. Rev. Lett. 84(13), 2993–2996 (2000). doi:10.1103/PhysRevLett.84.2993

    Article  ADS  Google Scholar 

  45. Smith G.: Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78(2), 022,306 (2008). doi:10.1103/PhysRevA.78.022306

    Article  Google Scholar 

  46. Smith G., Renes J.M., Smolin J.A.: Structured codes improve the Bennett-Brassard-84 quantum key rate. Phys. Rev. Lett. 100(17), 170,502 (2008). doi:10.1103/PhysRevLett.100.170502

    Article  Google Scholar 

  47. Ursin R. et al.: Space-QUEST: experiments with quantum entanglement in space. Europhys. News 40(3), 26–29 (2009) ArXiv:0806.0945

    Article  Google Scholar 

  48. Vernam G.S.: Cipher printing telegraph systems for secret wire and radio telegraphic communications. J. IEEE 55, 109–115 (1926)

    Google Scholar 

  49. Wasilewski W., Banaszek K.: Protecting an optical qubit against photon loss. Phys. Rev. A 75(4), 042,316 (2007). doi:10.1103/PhysRevA.75.042316

    Article  Google Scholar 

  50. Wilde, M.M., Hsieh, M.-H.: The quantum dynamic capacity formula of a quantum channel. Quantum Inf. Process. doi:10.1007/s11128-011-0310-6

  51. Wyner A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  52. Yard, J.: Simultaneous Classical-Quantum Capacities of Quantum Multiple Access Channels. Ph.D. thesis, Stanford University, Stanford, (2005). Quant-ph/0506050

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilde, M.M., Hsieh, MH. Public and private resource trade-offs for a quantum channel. Quantum Inf Process 11, 1465–1501 (2012). https://doi.org/10.1007/s11128-011-0317-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0317-z

Keywords