Abstract
Collins and Popescu realized a powerful analogy between several resources in classical and quantum information theory. The Collins–Popescu analogy states that public classical communication, private classical communication, and secret key interact with one another somewhat similarly to the way that classical communication, quantum communication, and entanglement interact. This paper discusses the information-theoretic treatment of this analogy for the case of noisy quantum channels. We determine a capacity region for a quantum channel interacting with the noiseless resources of public classical communication, private classical communication, and secret key. We then compare this region with the classical-quantum-entanglement region from our prior efforts and explicitly observe the information-theoretic consequences of the strong correlations in entanglement and the lack of a super-dense coding protocol in the public-private-secret-key setting. The region simplifies for several realistic, physically-motivated channels such as entanglement-breaking channels, Hadamard channels, and quantum erasure channels, and we are able to compute and plot the region for several examples of these channels.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahlswede R., Csiszár I.: Common randomness in information theory and cryptography—Part I: secret sharing. IEEE Trans. Inf. Theory 39, 1121–1132 (1993)
Ahlswede R., Csiszár I.: Common randomness in information theory and cryptography—Part II: CR-capacity. IEEE Trans. Inf. Theory 44, 225–240 (1998)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: IEEE Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179 (1984)
Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of quantum erasure channels. Phys. Rev. Lett. 78(16), 3217–3220 (1997). doi:10.1103/PhysRevLett.78.3217
Bennett C.H., Wiesner S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004). url:http://www.stanford.edu/~boyd/cvxbook/
Brádler K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inf. Theory. 57, 5497–5503 (2011)
Brádler K., Dutil N., Hayden P., Muhammad A.: Conjugate degradability and the quantum capacity of cloning channels. J. Math. Phys. 51, 072201 (2010). doi:10.1063/1.3449555
Brádler, K., Hayden, P., Panangaden, P.: Private information via the Unruh effect. J. High Energy Phys. 2009(08), 074 (2009). url:http://stacks.iop.org/1126-6708/2009/i=08/a=074
Brádler K., Hayden P., Touchette D., Wilde M.M.: Trade-off capacities of the quantum Hadamard channels. Phys. Rev. A 81(6), 062312 (2010)
Brito, F., DiVincenzo, D.P., Koch, R.H., Steffen, M.: Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit. New J. Phys. 10(3), 033,027 (2008). url:http://stacks.iop.org/1367-2630/10/033027
Cai N., Winter A., Yeung R.W.: Quantum privacy and quantum wiretap channels. Prob. Inf. Transm. 40(4), 318–336 (2004). doi:10.1007/s11122-005-0002-x
Collins D., Popescu S.: Classical analog of entanglement. Phys. Rev. A 65(3), 032,321 (2002). doi:10.1103/PhysRevA.65.032321
Csiszár I., Körner J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1967)
Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51(1), 44–55 (2005)
Devetak I., Shor P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256(2), 287–303 (2005)
Devetak I., Winter A.: Relating quantum privacy and quantum coherence: an operational approach. Phys. Rev. Lett. 93, 080,501 (2004)
Devetak I., Winter A.: Distillation of secret key and entanglement from quantum states. Proc. Roy. Soc. A 461, 207–235 (2005)
Duan, R., Grassl, M., Ji, Z., Zeng, B.: Multi-error-correcting amplitude damping codes. In: Proceedings of the International Symposium on Information Theory. Austin, Texas, USA (2010). ArXiv:1001.2356
Gingrich R.M., Kok P., Lee H., Vatan F., Dowling J.P.: All linear optical quantum memory based on quantum error correction. Phys. Rev. Lett. 91(21), 217,901 (2003). doi:10.1103/PhysRevLett.91.217901
Gisin N., Massar S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79(11), 2153–2156 (1997). doi:10.1103/PhysRevLett.79.2153
Grassl M., Beth T., Pellizzari T.: Codes for the quantum erasure channel. Phys. Rev. A 56(1), 33–38 (1997). doi:10.1103/PhysRevA.56.33
Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE Trans. Inf. Theory 44, 269–273 (1998)
Horodecki M., Shor P.W., Ruskai M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003) ArXiv:quant-ph/0302031
Hsieh M.H., Devetak I., Winter A.: Entanglement-assisted capacity of quantum multiple-access channels. IEEE Trans. Inf. Theory 54(7), 3078–3090 (2008)
Hsieh M.H., Luo Z., Brun T.: Secret-key-assisted private classical communication capacity over quantum channels. Phys. Rev. A 78(4), 042306 (2008). doi:10.1103/PhysRevA.78.042306
Hsieh M.H., Wilde M.M.: Public and private communication with a quantum channel and a secret key. Phys. Rev. A 80(2), 022,306 (2009). doi:10.1103/PhysRevA.80.022306
Hsieh, M.H., Wilde, M.M.: Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, vol. 5906, Chap. Optimal Trading of Classical Communication, Quantum Communication, and Entanglement, pp. 85–93. Springer (2009)
Hsieh M.H., Wilde M.M.: Trading classical communication, quantum communication, and entanglement in quantum Shannon theory. IEEE Trans. Inf. Theory 56(9), 4705–4730 (2010)
Hsieh M.H., Wilde M.M.: Entanglement-assisted communication of classical and quantum information. IEEE Trans. Inf. Theory 56(9), 4682–4704 (2010)
King C., Matsumoto K., Nathanson M., Ruskai M.B.: Properties of conjugate channels with applications to additivity and multiplicativity. Markov Process. Relat. Fields 13(2), 391–423 (2007) J. T. Lewis memorial issue
Korbicz J.K., Almeida M.L., Bae J., Lewenstein M., Acín A. (2008) Structural approximations to positive maps and entanglement-breaking channels. Phys. Rev. A 78(6), 062,105. doi:10.1103/PhysRevA.78.062105
Lamas-Linares A., Simon C., Howell J.C., Bouwmeester D.: Experimental quantum cloning of single photons. Science 296, 712–714 (2002)
Lu C.Y., Gao W.B., Zhang J., Zhou X.Q., Yang T., Pan J.W.: Experimental quantum coding against qubit loss error. Proc. Natl. Acad. Sci. USA 105(32), 11,050–11,054 (2008)
Maurer U.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39, 733–742 (1993)
Milonni P.W., Hardies M.L.: Photons cannot always be replicated. Phys. Lett. A 92(7), 321–322 (1982)
Minkel, J.R.: Space Station Could Beam Secret Quantum Codes by 2014. Scientific American (2008). http://www.scientificamerican.com/article.cfm?id=space-station-could-beam&sc=rss&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+ScientificAmerican-News+%2528Scientific+American+-+News%2529
Chruściński D., Pytel J., Sarbicki G.: Constructing optimal entanglement witnesses. Phys. Rev. A 80(6), 062,314 (2009). doi:10.1103/PhysRevA.80.062314
Scarani V., Bechmann-Pasquinucci H., Cerf N.J., Dušek M., Lütkenhaus N., Peev M.: The security of practical quantum key distribution. Rev. Modern Phys. 81(3), 1301–1350 (2009). doi:10.1103/RevModPhys.81.1301
Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997)
Schumacher B., Westmoreland M.D.: Quantum privacy and quantum coherence. Phys. Rev. Lett. 80(25), 5695–5697 (1998). doi:10.1103/PhysRevLett.80.5695
Shor, P.W.: Additivity of the classical capacity of entanglement-breaking quantum channels. J. Math. Phys. 43(9), 4334–4340 (2002). doi:10.1063/1.1498000. url:http://link.aip.org/link/?JMP/43/4334/1
Simon C., Weihs G., Zeilinger A.: Optimal quantum cloning via stimulated emission. Phys. Rev. Lett. 84(13), 2993–2996 (2000). doi:10.1103/PhysRevLett.84.2993
Smith G.: Private classical capacity with a symmetric side channel and its application to quantum cryptography. Phys. Rev. A 78(2), 022,306 (2008). doi:10.1103/PhysRevA.78.022306
Smith G., Renes J.M., Smolin J.A.: Structured codes improve the Bennett-Brassard-84 quantum key rate. Phys. Rev. Lett. 100(17), 170,502 (2008). doi:10.1103/PhysRevLett.100.170502
Ursin R. et al.: Space-QUEST: experiments with quantum entanglement in space. Europhys. News 40(3), 26–29 (2009) ArXiv:0806.0945
Vernam G.S.: Cipher printing telegraph systems for secret wire and radio telegraphic communications. J. IEEE 55, 109–115 (1926)
Wasilewski W., Banaszek K.: Protecting an optical qubit against photon loss. Phys. Rev. A 75(4), 042,316 (2007). doi:10.1103/PhysRevA.75.042316
Wilde, M.M., Hsieh, M.-H.: The quantum dynamic capacity formula of a quantum channel. Quantum Inf. Process. doi:10.1007/s11128-011-0310-6
Wyner A.D.: The wire-tap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)
Yard, J.: Simultaneous Classical-Quantum Capacities of Quantum Multiple Access Channels. Ph.D. thesis, Stanford University, Stanford, (2005). Quant-ph/0506050
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wilde, M.M., Hsieh, MH. Public and private resource trade-offs for a quantum channel. Quantum Inf Process 11, 1465–1501 (2012). https://doi.org/10.1007/s11128-011-0317-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0317-z