Abstract
Due to the intrinsic similarity between partial adiabatic evolution and global adiabatic evolution, we generalize the partial adiabatic evolution proposed recently to its local adiabatic algorithm version. However, unlike that the local adiabatic evolution can speed up the global adiabatic algorithm quadratically, we prove that this new quantum algorithm presented here just has the same time complexity as the original partial adiabatic evolution. This may imply the optimality of the original partial adiabatic evolution or its generalized version. Additionally, a concrete example is given to further support our conclusion.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(20), 472–476 (2001)
Aharonov, D., Dam, Wv, Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37(1), 166–194 (2007)
Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99(7), 070502 (2007)
Dickson, N.G., Amin, M.H.S.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106(5), 050502 (2011)
Žnidarič, M., Horvat, M.: Exponential complexity of an adiabatic algorithm for an NP-complete problem. Phys. Rev. A 73(2), 022329 (2006)
Wei, Z., Ying, M.: A modified quantum adiabatic evolution for the Deutsch–Jozsa problem. Phys. Lett. A 354, 271–273 (2006)
Gaitan, F., Clark, L.: Ramsey numbers and adiabatic quantum computing. Phys. Rev. Lett. 108(1), 010501 (2012)
Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325–328 (1997)
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic, evolution. quant-ph/0001106 (2000)
Tulsi, A.: Adiabatic quantum computation with a one-dimensional projector Hamiltonian. Phys. Rev. A 80(5), 052328 (2009)
Zhang, Y., Lu, S.: Quantum search by partial adiabatic evolution. Phys. Rev. A 82(3), 034304 (2010)
Zhang, Y., Hu, H., Lu, S.: A quantum search algorithm based on partial adiabatic evolution. Chin. Phys. B 20(4), 040309 (2011)
Sun, J., Lu, S., Liu, F., Yang, L.: Partial evolution based local adiabatic quantum search. Chin. Phys. B 21(1), 010306 (2012)
Messiah, A.: Quantum Mechanics, 1st edn. New York, Dover (1999)
Farhi, E., Gutmann, S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57(4), 2403–2406 (1998)
Biamonte, J.D.: Nonperturbative k-body to two-body commuting conversion Hamiltonians and embedding problem instances into Ising spins. Phys. Rev. A 77(5), 052331 (2008)
Whitfield, J.D., Faccin, M., Biamonte, J.D.: Ground-state spin logic. EPL 99, 57004 (2012)
Biamonte, J.D., Love, P.J.: Realizable Hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78(1), 012352 (2008)
Biamonte, J.D., Bergholm, V., Whitfield, J.D., Fitzsimons, J., Aspuru-Guzik, A.: Adiabatic quantum simulators. AIP Adv. 1(022126), 1–11 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work is supported by the National Natural Science Foundation of China under Grant Nos. 61173050 and U1233119.
Rights and permissions
About this article
Cite this article
Sun, J., Lu, S. & Liu, F. Generalized quantum partial adiabatic evolution. Quantum Inf Process 13, 909–916 (2014). https://doi.org/10.1007/s11128-013-0700-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0700-z