Abstract
We propose a deterministic scheme to implement the multiqubit controlled-NOT gate of photons and multiqubit controlled-phase gate of electron spins with one control qubit and multiple target qubits using quantum dots in double-sided optical cavities. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive way. We assess the feasibility of the scheme and show that the gates can be implemented with high average fidelities by choosing the realistic system parameters appropriately. The scheme is useful in quantum information processing such as entanglement preparation, quantum error correction, and quantum algorithms.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H.J.K.H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)
Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)
Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)
Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)
Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. Korean Phys. Soc. 53, 1787–1790 (2008)
Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)
Zou, X.B., Zhang, S.L., Li, K., Guo, G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302 (2007)
Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)
Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature (London) 417, 709–711 (2002)
Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)
Niskanen, A.O., Vartiainen, J.J., Salomaa, M.M.: Optimal multiqubit operations for Josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)
DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)
Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)
Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)
Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)
Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)
Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377, 2870–2876 (2013)
Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)
Okamoto, R., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005)
Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004)
Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)
Gábris, A., Agarwal, G.S.: Vacuum-induced Stark shifts for quantum logic using a collective system in a high-quality dispersive cavity. Phys. Rev. A 71, 052316 (2005)
Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)
Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)
Zou, X.B., Dong, Y.L., Guo, G.C.: Implementing a conditional z gate by a combination of resonant interaction and quantum interference. Phys. Rev. A 74, 032325 (2006)
Xiao, Y.F., Zou, X.B., Guo, G.C.: Implementing a conditional N-qubit phase gate in a largely detuned optical cavity. Phys. Rev. A 75, 014302 (2007)
Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)
Zheng, S.B.: Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction. Phys. Rev. A 87, 042318 (2013)
Wang, X., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907 (2001)
Fujiwara, S., Osaki, H., Buluta, I.M., Hasegawa, S.: Efficient quantum logic with cold trapped ions for maximally entangled states. Phys. Rev. A 75, 012301 (2007)
Yang, C.P., Han, S.: n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)
Das, R., Kumar, A.: Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm. Phys. Rev. A 68, 032304 (2003)
Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81, 062323 (2010)
Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 82, 062326 (2010)
Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489–1492 (2014)
Yang, C.P., Su, Q.P., Zhang, F.Y., Zheng, S.B.: Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Opt. Lett. 39, 3312–3315 (2014)
Jiang, X.X., Cui, W.X., Hu, S., An, C.S., Wang, H.F.: A scheme for direct implementation of a two-target qubit controlled phase gate with quantum dots in coupled photonic crystal cavities without using classical laser pulses. Laser Phys. Lett. 11, 125202 (2014)
Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)
Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)
Greilich, A., Yakovlev, D.R., Shabaev, A., Efros, A.L., Yugova, I.A., Oulton, R., Stavarache, V., Reuter, D., Wieck, A., Bayer, M.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006)
Press, D., De Greve, K., McMahon, P.L., Ladd, T.D., Friess, B., Schneider, C., Kamp, M., Höfling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photo. 4, 367–370 (2010)
Ciorga, M., Sachrajda, A.S., Hawrylak, P., Gould, C., Zawadzki, P., Jullian, S., Feng, Y., Wasilewski, Z.: Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315(R) (2000)
Elzerman, J.M., Hanson, R., Greidanus, J.S., Van Beveren, L.W., De Franceschi, S., Vandersypen, L.M.K., Tarucha, S., Kouwenhoven, L.P.: Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003)
Atatüre, M., Dreiser, J., Badolato, A., Högele, A., Karrai, K., Imamoglu, A.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)
Atatüre, M., Dreiser, J., Badolato, A., Imamoglu, A.: Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007)
Hanson, R., van Beveren, L.W., Vink, I.T., Elzerman, J.M., Naber, W.J.M., Koppens, F.H.L., Kouwenhoven, L.P., Vandersypen, L.M.K.: Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)
Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)
Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)
Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)
Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)
Cui, W.X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Spin-based scheme for implementing an N-qubit tunable controlled phase gate in quantum dots by interference of polarized photons. Laser Phys. 24, 045204 (2014)
Cui, W.X., Hu, S., Wang, H.F., Zhu, A.D., Zhang, S.: Scheme for implementing N-qubit controlled phase gate of photons assisted by quantum-dot-microcavity coupled system: optimal probability of success. Laser Phys. Lett. 12, 055201 (2015)
Zou, X.B., Li, K., Guo, G.C.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2006)
Fiurášek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A 73, 062313 (2006)
Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)
Šašura, M., Bužek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64, 012305 (2001)
Gaitan, F.: Quantum error correction and fault tolerant quantum computing. CRC Press, USA (2008)
Beth, T., Rötteler, M.: Quantum Information, vol. 173, Ch. 4. Springer, Berlin (2001)
Braunstein, S.L., Bužek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)
Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)
Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)
Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)
Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390 (1997)
Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197–200 (2004)
Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature (London) 432, 200–203 (2004)
Peter, E., Senellart, P., Martrou, D., Lemaître, A., Hours, J., Gérard, J.M., Bloch, J.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)
Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 1109 (2007)
Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11264042 and 11465020.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bai, CH., Wang, DY., Hu, S. et al. Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf Process 15, 1485–1498 (2016). https://doi.org/10.1007/s11128-015-1197-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1197-4