Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a deterministic scheme to implement the multiqubit controlled-NOT gate of photons and multiqubit controlled-phase gate of electron spins with one control qubit and multiple target qubits using quantum dots in double-sided optical cavities. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive way. We assess the feasibility of the scheme and show that the gates can be implemented with high average fidelities by choosing the realistic system parameters appropriately. The scheme is useful in quantum information processing such as entanglement preparation, quantum error correction, and quantum algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H.J.K.H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166 (1999)

    Article  ADS  Google Scholar 

  3. Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)

    Article  ADS  Google Scholar 

  4. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Simple implementation of discrete quantum Fourier transform via cavity quantum electrodynamics. New J. Phys. 13, 013021 (2011)

    Article  ADS  Google Scholar 

  5. Wang, H.F., Zhang, S., Yeon, K.H.: Implementing quantum discrete Fourier transform by using cavity quantum electrodynamics. J. Korean Phys. Soc. 53, 1787–1790 (2008)

    Google Scholar 

  6. Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Protocol and quantum circuit for implementing the N-bit discrete quantum Fourier transform in cavity QED. J. Phys. B At. Mol. Opt. Phys. 43, 065503 (2010)

    Article  ADS  Google Scholar 

  7. Zou, X.B., Zhang, S.L., Li, K., Guo, G.C.: Linear optical implementation of the two-qubit controlled phase gate with conventional photon detectors. Phys. Rev. A 75, 034302 (2007)

    Article  ADS  Google Scholar 

  8. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  9. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature (London) 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  10. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Niskanen, A.O., Vartiainen, J.J., Salomaa, M.M.: Optimal multiqubit operations for Josephson charge qubits. Phys. Rev. Lett. 90, 197901 (2003)

    Article  ADS  Google Scholar 

  12. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  13. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  14. Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  15. Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  16. Childs, A.M., Chuang, I.L., Leung, D.W.: Realization of quantum process tomography in NMR. Phys. Rev. A 64, 012314 (2001)

    Article  ADS  Google Scholar 

  17. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    Article  ADS  Google Scholar 

  18. Beenakker, C.W.J., DiVincenzo, D.P., Emary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  19. Wang, H.F., Zhu, A.D., Zhang, S., Yeon, K.H.: Optically controlled phase gate and teleportation of a controlled-not gate for spin qubits in a quantum-dot-microcavity coupled system. Phys. Rev. A 87, 062337 (2013)

    Article  ADS  Google Scholar 

  20. Wang, H.F., Wen, J.J., Zhu, A.D., Zhang, S., Yeon, K.H.: Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity. Phys. Lett. A 377, 2870–2876 (2013)

    Article  ADS  MATH  Google Scholar 

  21. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  22. Okamoto, R., Hofmann, H.F., Takeuchi, S., Sasaki, K.: Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005)

    Article  ADS  Google Scholar 

  23. Goto, H., Ichimura, K.: Multiqubit controlled unitary gate by adiabatic passage with an optical cavity. Phys. Rev. A 70, 012305 (2004)

    Article  ADS  Google Scholar 

  24. Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  25. Gábris, A., Agarwal, G.S.: Vacuum-induced Stark shifts for quantum logic using a collective system in a high-quality dispersive cavity. Phys. Rev. A 71, 052316 (2005)

    Article  ADS  Google Scholar 

  26. Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  27. Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)

    Article  ADS  Google Scholar 

  28. Zou, X.B., Dong, Y.L., Guo, G.C.: Implementing a conditional z gate by a combination of resonant interaction and quantum interference. Phys. Rev. A 74, 032325 (2006)

    Article  ADS  Google Scholar 

  29. Xiao, Y.F., Zou, X.B., Guo, G.C.: Implementing a conditional N-qubit phase gate in a largely detuned optical cavity. Phys. Rev. A 75, 014302 (2007)

    Article  ADS  Google Scholar 

  30. Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)

    Article  ADS  Google Scholar 

  31. Zheng, S.B.: Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction. Phys. Rev. A 87, 042318 (2013)

    Article  ADS  Google Scholar 

  32. Wang, X., Sørensen, A., Mølmer, K.: Multibit gates for quantum computing. Phys. Rev. Lett. 86, 3907 (2001)

    Article  ADS  Google Scholar 

  33. Fujiwara, S., Osaki, H., Buluta, I.M., Hasegawa, S.: Efficient quantum logic with cold trapped ions for maximally entangled states. Phys. Rev. A 75, 012301 (2007)

    Article  ADS  Google Scholar 

  34. Yang, C.P., Han, S.: n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)

    Article  ADS  Google Scholar 

  35. Das, R., Kumar, A.: Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm. Phys. Rev. A 68, 032304 (2003)

    Article  ADS  Google Scholar 

  36. Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 81, 062323 (2010)

    Article  ADS  Google Scholar 

  37. Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 82, 062326 (2010)

    Article  ADS  Google Scholar 

  38. Wang, H.F., Zhu, A.D., Zhang, S.: One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities. Opt. Lett. 39, 1489–1492 (2014)

    Article  ADS  Google Scholar 

  39. Yang, C.P., Su, Q.P., Zhang, F.Y., Zheng, S.B.: Single-step implementation of a multiple-target-qubit controlled phase gate without need of classical pulses. Opt. Lett. 39, 3312–3315 (2014)

    Article  ADS  Google Scholar 

  40. Jiang, X.X., Cui, W.X., Hu, S., An, C.S., Wang, H.F.: A scheme for direct implementation of a two-target qubit controlled phase gate with quantum dots in coupled photonic crystal cavities without using classical laser pulses. Laser Phys. Lett. 11, 125202 (2014)

    Article  ADS  Google Scholar 

  41. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  42. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  43. Greilich, A., Yakovlev, D.R., Shabaev, A., Efros, A.L., Yugova, I.A., Oulton, R., Stavarache, V., Reuter, D., Wieck, A., Bayer, M.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006)

    Article  ADS  Google Scholar 

  44. Press, D., De Greve, K., McMahon, P.L., Ladd, T.D., Friess, B., Schneider, C., Kamp, M., Höfling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photo. 4, 367–370 (2010)

    Article  ADS  Google Scholar 

  45. Ciorga, M., Sachrajda, A.S., Hawrylak, P., Gould, C., Zawadzki, P., Jullian, S., Feng, Y., Wasilewski, Z.: Addition spectrum of a lateral dot from Coulomb and spin-blockade spectroscopy. Phys. Rev. B 61, R16315(R) (2000)

    Article  ADS  Google Scholar 

  46. Elzerman, J.M., Hanson, R., Greidanus, J.S., Van Beveren, L.W., De Franceschi, S., Vandersypen, L.M.K., Tarucha, S., Kouwenhoven, L.P.: Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B 67, 161308(R) (2003)

    Article  ADS  Google Scholar 

  47. Atatüre, M., Dreiser, J., Badolato, A., Högele, A., Karrai, K., Imamoglu, A.: Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006)

    Article  ADS  Google Scholar 

  48. Atatüre, M., Dreiser, J., Badolato, A., Imamoglu, A.: Observation of Faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007)

    Article  Google Scholar 

  49. Hanson, R., van Beveren, L.W., Vink, I.T., Elzerman, J.M., Naber, W.J.M., Koppens, F.H.L., Kouwenhoven, L.P., Vandersypen, L.M.K.: Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)

    Article  ADS  Google Scholar 

  50. Berezovsky, J., Mikkelsen, M.H., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    Article  ADS  Google Scholar 

  51. Press, D., Ladd, T.D., Zhang, B., Yamamoto, Y.: Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature (London) 456, 218 (2008)

    Article  ADS  Google Scholar 

  52. Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)

    Article  ADS  Google Scholar 

  53. Wei, H.R., Deng, F.G.: Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep. 4, 7551 (2014)

    Article  ADS  Google Scholar 

  54. Cui, W.X., Hu, S., Guo, Q., Wang, H.F., Zhang, S.: Spin-based scheme for implementing an N-qubit tunable controlled phase gate in quantum dots by interference of polarized photons. Laser Phys. 24, 045204 (2014)

    Article  ADS  Google Scholar 

  55. Cui, W.X., Hu, S., Wang, H.F., Zhu, A.D., Zhang, S.: Scheme for implementing N-qubit controlled phase gate of photons assisted by quantum-dot-microcavity coupled system: optimal probability of success. Laser Phys. Lett. 12, 055201 (2015)

    Article  ADS  Google Scholar 

  56. Zou, X.B., Li, K., Guo, G.C.: Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate. Phys. Rev. A 74, 044305 (2006)

    Article  ADS  Google Scholar 

  57. Fiurášek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A 73, 062313 (2006)

    Article  ADS  Google Scholar 

  58. Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)

    Article  ADS  Google Scholar 

  59. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  60. Šašura, M., Bužek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64, 012305 (2001)

    Article  Google Scholar 

  61. Gaitan, F.: Quantum error correction and fault tolerant quantum computing. CRC Press, USA (2008)

    Book  MATH  Google Scholar 

  62. Beth, T., Rötteler, M.: Quantum Information, vol. 173, Ch. 4. Springer, Berlin (2001)

    MATH  Google Scholar 

  63. Braunstein, S.L., Bužek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)

    Article  ADS  Google Scholar 

  64. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  65. Bonato, C., Haupt, F., Oemrawsingh, S.S., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  66. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  67. Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390 (1997)

    Article  ADS  Google Scholar 

  68. Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197–200 (2004)

    Article  ADS  Google Scholar 

  69. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature (London) 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  70. Peter, E., Senellart, P., Martrou, D., Lemaître, A., Hours, J., Gérard, J.M., Bloch, J.: Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  Google Scholar 

  71. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 1109 (2007)

    Article  Google Scholar 

  72. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11264042 and 11465020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, CH., Wang, DY., Hu, S. et al. Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system. Quantum Inf Process 15, 1485–1498 (2016). https://doi.org/10.1007/s11128-015-1197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1197-4

Keywords