Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the second-order asymptotics for entanglement-assisted communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon’s classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion and thus completely characterize the convergence toward the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. In other words, the channel is assumed to be memoryless.

  2. All logarithms in this paper are taken to base two.

References

  1. Arimoto, S.: On the converse to the coding theorem for discrete memoryless channels. IEEE Trans. Inf. Theory 19(3), 357–359 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berta, M., Christandl, M., Renner, R.: The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys. 306(3), 579–615 (2011). arXiv:0912.3805

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: Quantum reverse Shannon theorem. IEEE Trans. Inf. Theory 60(5), 1–34 (2014). arXiv:0912.5537

    Article  MathSciNet  Google Scholar 

  5. Beigi, S., Gohari, A.: Quantum achievability proof via collision relative entropy. IEEE Trans. Inf. Theory 60(12), 7980–7986 (2014). arXiv:1312.3822

    Article  MathSciNet  Google Scholar 

  6. Bowen, G.: Quantum feedback channels. IEEE Trans. Inf. Theory 50(10), 2429–2434 (2004). arXiv:quant-ph/0209076

    Article  MathSciNet  MATH  Google Scholar 

  7. Bradler, K.: An infinite sequence of additive channels: the classical capacity of cloning channels. IEEE Trans. Inf. Theory 57(8), 5497–5503 (2011). arXiv:0903.1638

    Article  MathSciNet  Google Scholar 

  8. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081–3084 (1999). arXiv:quant-ph/9904023

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002). arXiv:quant-ph/0106052

    Article  MathSciNet  MATH  Google Scholar 

  10. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Christandl, M., König, R., Renner, R.: Postselection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett. 102(2), 020504 (2009). arXiv:0809.3019

    Article  ADS  Google Scholar 

  12. Cooney, T., Mosonyi, M., Wilde, M.M.: Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication (August 2014). arXiv:1408.3373

  13. Csiszár, I.: The method of types. IEEE Trans. Inf. Theory 44(6), 2505–2523 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)

    Book  MATH  Google Scholar 

  15. Datta, N., Hsieh, M.-H.: One-shot entanglement-assisted quantum and classical communication. IEEE Trans. Inf. Theory 59(3), 1929–1939 (2013). arXiv:1105.3321

    Article  MathSciNet  Google Scholar 

  16. Datta, N., Leditzky, F.: Second-order asymptotics for source coding, dense coding and pure-state entanglement conversions. IEEE Trans. Inf. Theory 61(1), 582–608 (2015). arXiv:1403.2543

    Article  MathSciNet  Google Scholar 

  17. Fannes, M., Haegeman, B., Mosonyi, M., Vanpeteghem, D.: Additivity of minimal entropy output for a class of covariant channels (October 2004). arXiv:quant-ph/0410195

  18. Gupta, M.K., Wilde, M.M.: Multiplicativity of completely bounded \(p\)-norms implies a strong converse for entanglement-assisted capacity. Commun. Math. Phys. 334(2), 867–887 (2015). arXiv:1310.7028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hastings, M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255–257 (2009). arXiv:0809.3972

    Article  Google Scholar 

  20. Hayashi, M.: Information spectrum approach to second-order coding rate in channel coding. IEEE Trans. Inf. Theory 55(11), 4947–4966 (2009). arXiv:0801.2242

    Article  MathSciNet  Google Scholar 

  21. Hsieh, M.-H., Devetak, I., Winter, A.: Entanglement-assisted capacity of quantum multiple-access channels. IEEE Trans. Inf. Theory 54(7), 3078–3090 (2008). arXiv:quant-ph/0511228

    Article  MathSciNet  MATH  Google Scholar 

  22. Hayashi, M., Nagaoka, H.: General formulas for capacity of classical-quantum channels. IEEE Trans. Inf. Theory 49(7), 1753–1768 (2003). arXiv:quant-ph/0206186

    Article  MathSciNet  MATH  Google Scholar 

  23. Holevo, A.S.: On entanglement assisted classical capacity. J. Math. Phys. 43(9), 4326–4333 (2002). arXiv:quant-ph/0106075

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Holevo, A.S.: Remarks on the classical capacity of quantum channel (December 2002). arXiv:quant-ph/0212025

  25. Hiai, F., Petz, D.: The proper formula for relative entropy and its asymptotics in quantum probability. Commun. Math. Phys. 143(1), 99–114 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Horodecki, M., Shor, P.W., Ruskai, M.B.: Entanglement breaking channels. Rev. Math. Phys. 15(6), 629–641 (2003). arXiv:quant-ph/0302031

    Article  MathSciNet  MATH  Google Scholar 

  27. Kumagai, W., Hayashi, M.: Entanglement concentration is irreversible. Phys. Rev. Lett. 111(13), 130407 (2013). arXiv:1305.6250

    Article  ADS  Google Scholar 

  28. Li, K.: Second order asymptotics for quantum hypothesis testing. Ann. Stat. 42(1), 171–189 (2014). arXiv:1208.1400

    Article  MathSciNet  MATH  Google Scholar 

  29. Leung, D., Matthews, W.: On the power of PPT-preserving and non-signalling codes. IEEE Trans. Inf. Theory 61(8), 4486–4499 (2015). arXiv:1406.7142

    Article  MathSciNet  Google Scholar 

  30. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013). arXiv:1306.3142

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Matthews, W., Wehner, S.: Finite blocklength converse bounds for quantum channels. IEEE Trans. Inf. Theory 60(11), 7317–7329 (2014). arXiv:1210.4722

    Article  MathSciNet  Google Scholar 

  32. Polyanskiy, Y., Poor, H.V., Verdú, S.: Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 56(5), 2307–2359 (2010)

    Article  MathSciNet  Google Scholar 

  33. Renner, R.: Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3(9), 645–649 (2007). arXiv:quant-ph/0703069

    Article  Google Scholar 

  34. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shannon, C.E.: The zero-error capacity of a noisy channel. IRE Trans. Inf. Theory IT–2, 8–19 (1956)

    Article  MathSciNet  Google Scholar 

  36. Strassen, V.: Asymptotische Abschätzungen in Shannons Informationstheorie. In: Transactions of the Third Prague Conference on Information Theory, pp. 689–723. Prague (1962)

  37. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)

    Article  ADS  Google Scholar 

  38. Tomamichel, M., Berta, M., Renes, J.M.: Quantum coding with finite resources (April 2015). arXiv:1504.04617

  39. Tomamichel, M., Hayashi, M.: A hierarchy of information quantities for finite block length analysis of quantum tasks. IEEE Trans. Inf. Theory 59(11), 7693–7710 (2013). arXiv:1208.1478

    Article  MathSciNet  Google Scholar 

  40. Tomamichel, M., Tan, V.Y.F.: Second-order asymptotics for the classical capacity of image-additive quantum channels. Commun. Math. Phys. 338(1), 103–137 (2015). doi:10.1007/s00220-015-2382-0. arXiv:1308.6503

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Werner, R.F., Holevo, A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. J. Math. Phys. 43(9), 4353–4357 (2002). arXiv:quant-ph/0203003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013). arXiv:1106.1445

    Book  MATH  Google Scholar 

  43. Wang, L., Renner, R.: One-shot classical-quantum capacity and hypothesis testing. Phys. Rev. Lett. 108(20), 200501 (2012). arXiv:1007.5456

    Article  ADS  Google Scholar 

  44. Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014). arXiv:1306.1586

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are especially grateful to Milan Mosonyi for insightful discussions and for his help in establishing the proof of Propositions 11 and 14. We acknowledge discussions with Mario Berta, Ke Li, Will Matthews, and Andreas Winter, and we thank the Isaac Newton Institute (Cambridge) for its hospitality while part of this work was completed. MT is funded by the Ministry of Education (MOE) and National Research Foundation Singapore, as well as MOE Tier 3 Grant “Random numbers from quantum processes” (MOE2012-T3-1-009). MMW acknowledges startup funds from the Department of Physics and Astronomy at LSU, support from the NSF through Award No. CCF-1350397, and support from the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Tomamichel.

Appendices

Appendix 1: Heisenberg–Weyl operators

For any \(x,z \in \{0,1,\ldots , d\}\) the Heisenberg–Weyl Operators X(x) and Z(z) are defined through their actions on the vectors of the qudit computational basis \(\{|j\rangle \}_{j \in \{0,1,\ldots , d-1\}}\) as follows:

$$\begin{aligned} X(x) |j\rangle&= |j \oplus x\rangle ,\end{aligned}$$
(6.1)
$$\begin{aligned} Z(z)|j\rangle&= e^{2\pi i z j / d} |j\rangle , \end{aligned}$$
(6.2)

where \(j \oplus x = (j + x) \, \mathrm{mod }\, d \). Also note that if \(d = 1\), then both X(x) and Z(z) are equal to the identity operator.

Appendix 2: The method of types

In our proofs we employ the notion of types [13], and hence we briefly recall certain relevant definitions and properties here.

Let \(\mathcal {X}\) denote a discrete alphabet and fix \(n \in \mathbb {N}\). The type (or empirical probability distribution) \(P_{x^n}\) of a sequence \(x^n \in \mathcal {X}^n\) is the empirical frequency of occurrences of each letter of \(\mathcal {X}\), i.e., \(P_{x^n}(a) := \frac{1}{n} \sum _{i=1}^n \delta _{x_i,a}\) for all \(a \in \mathcal {X}\). Let \(\mathcal {P}_n\) denote the set of all types. The number of types, \(|\mathcal {P}_n|\), satisfies the bound [14, Thm. 11.1.1]

$$\begin{aligned} |\mathcal {P}_n| \le (n+1)^{|\mathcal {X}|}. \end{aligned}$$
(7.1)

For any type \(t \in \mathcal {P}_n\), the type class \(\mathcal {T}^t\) of t is the set of sequences of type t, i.e.

$$\begin{aligned} \mathcal {T}^t := \{x^n \in \mathcal {X}^n \, : \, P_{x^n} = t \}. \end{aligned}$$
(7.2)

The number of types in a type class \(\mathcal {T}^t\) satisfies the following lower bound [13, Lm. II.2]:

$$\begin{aligned} |\mathcal {T}^t| \ge \frac{2^{nH(t)}}{(n+1)^{|\mathcal {X}|}}, \end{aligned}$$
(7.3)

where \(H(t) := - \sum _{a \in \mathcal {X}} t(a) \log t(a)\), is the Shannon entropy of the type.

Let q be any probability distribution on \(\mathcal {X}\). For any sequence \(x^n = (x_1, x_2, \ldots , x_n) \in \mathcal {X}^n\), let \(q^n(x^n) = \prod _{i=1}^n q(x_i)\). Then, we have

$$\begin{aligned} q^n(x^n) = 2^{-n\left( H(t) + D(t\Vert q)\right) }, \qquad \text {where} \quad t = P_{x^n} \end{aligned}$$
(7.4)

is the type of \(x^n\) and \(D(t\Vert q):= \sum _{a \in \mathcal {X}} t(a) \log \frac{t(a)}{q(a)}\) is the Kullback-Leibler divergence of the probability distributions t and q. From (7.1), (7.3) and (7.4) it follows that for any sequence \(x^n \in \mathcal {X}^n\) of type t,

$$\begin{aligned} (n+1)^{|\mathcal {X}|} 2^{nD(t\Vert q)} q^n(x^n) = 2^{-nH(t)}(n+1)^{|\mathcal {X}|}\ge \frac{1}{|\mathcal {T}^t|}. \end{aligned}$$
(7.5)

Finally, for any \(\mu > 0\) we have [14, Eq. (11.98)]

$$\begin{aligned} \mathop {\mathop {\sum }\limits _{x^n \in \mathcal {X}^n}}\limits _{D(P_{x^n}\Vert q) > \mu } q^n(x^n) \le 2^{-n\left( \mu - |\mathcal {X}|\frac{ \log (n+1)}{n}\right) }. \end{aligned}$$
(7.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, N., Tomamichel, M. & Wilde, M.M. On the second-order asymptotics for entanglement-assisted communication. Quantum Inf Process 15, 2569–2591 (2016). https://doi.org/10.1007/s11128-016-1272-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1272-5

Keywords