Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum teleportation and Birman–Murakami–Wenzl algebra

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the relationship of quantum teleportation in quantum information science and the Birman–Murakami–Wenzl (BMW) algebra in low-dimensional topology. For simplicity, we focus on the two spin-1/2 representation of the BMW algebra, which is generated by both the Temperley–Lieb projector and the Yang–Baxter gate. We describe quantum teleportation using the Temperley–Lieb projector and the Yang–Baxter gate, respectively, and study teleportation-based quantum computation using the Yang–Baxter gate. On the other hand, we exploit the extended Temperley–Lieb diagrammatical approach to clearly show that the tangle relations of the BMW algebra have a natural interpretation of quantum teleportation. Inspired by this interpretation, we construct a general representation of the tangle relations of the BMW algebra and obtain interesting representations of the BMW algebra. Therefore, our research sheds a light on a link between quantum information science and low-dimensional topology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The Bell transform \(B_{\textit{ell}}\) in this paper is defined as

    figure a

    where \(k=k(k^\prime ,l^\prime )\) and \(l=l(k^\prime ,l^\prime )\) are bijective functions of \(k^\prime \) and \(l^\prime \), respectively; \(e^{i \phi _{\textit{kl}}}\) is the phase factor; and \(S_{kl}\) and \(Q_{kl}\) are single-qubit gates. Such a definition of the Bell transform differs from the proposed definition of the Bell transform in the previous research [34] where single-qubit gates \(S_{kl}\) and \(Q_{kl}\) are not involved.

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000 and 2011)

  2. Preskill, J.: Lecture Notes on Quantum Computation. http://www.theory.caltech.edu/preskill

  3. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen Channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49, 1473–1475 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Braunstein, S.L., D’Ariano, G.M., Milburn, G.J., Sacchi, M.F.: Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000)

    Article  ADS  Google Scholar 

  6. Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Theor. 35, 7081–7094 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Aravind, P.K.: Borromean Entanglement of the GHZ State. Potentiality, Entanglement and Passion-at-a-Distance. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  8. Kauffman, L.H., Lomonaco Jr., S.J.: Quantum entanglement and topological entanglement. New J. Phys. 4, 73 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kauffman, L.H.: Knots and Physics. World Scientific Publishers, Singapore (2002)

    MATH  Google Scholar 

  10. Yang, C.N.: Some exact results for the many body problems in one dimension with repulsive delta function interaction. Phys. Rev. Lett. 19, 1312–1314 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Perk, J.H.H., Au-Yang, H.: Yang–Baxter Equations, Encyclopedia of Mathematical Physics. Elsevier, Oxford (2006)

    Google Scholar 

  13. Dye, H.: Unitary solutions to the Yang–Baxter equation in dimension four. Quantum Inf. Process. 2, 117–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kauffman, L.H., Lomonaco Jr., S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  15. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal Quantum Gate, Yang–Baxterization and Hamiltonian. Int. J. Quantum Inf. 4, 669–678 (2005)

    Article  MATH  Google Scholar 

  16. Alagic, G., Jarret, M., Jordan, S.P.: Yang-Baxter operators need quantum entanglement to distinguish knots. J. Phys. A Math. Theor. 49, 075203 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Temperley, H.N.V., Lieb, E.H.: Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the percolation problem. Proc. R. Soc. A 322, 251 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Birman, J.S., Wenzl, H.B.: Link polynomials and a new algebra. Trans. Am. Math. Soc. 313, 249–273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Murakami, J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24, 745–758 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Jones, V.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125, 459–467 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Cheng, Y., Ge, M.L., Xue, K.: Yang–Baxterization of braid group representations. Commun. Math. Phys. 136, 195–208 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Wang, G., Xue, K., Sun, C., Zhou, C., Hu, T., Wang, Q.: Temperley–Lieb algebra, Yang–Baxterization and universal gate. Quantum Inf. Process. 9, 699–710 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y.: Teleportation, braid group and Temperley–Lieb algebra. J. Phys. A Math. Theor. 39, 11599–11622 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Zhang, Y., Kauffman, L.H.: Topological-Like features in diagrammatical quantum circuits. Quantum Inf. Process. 6, 477–507 (2007)

    Article  MATH  Google Scholar 

  25. Zhang, Y.: Braid group, Temperley–Lieb algebra, and quantum information and computation. AMS Contemp. Math. 482, 52 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, Y., Zhang, K., Pang, J.-L.: Teleportation-based quantum computation, extended Temperley–Lieb diagrammatical approach and Yang–Baxter equation. Quantum Inf. Process. 15, 405–464 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Wang, G., Xue, K., Sun, C., Liu, B., Liu, Y., Zhang, Y.: Topological basis associated with B-M-W algebra: two spin-1/2 realization. Phys. Lett. A 379, 1–4 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, C., Xue, K., Wang, G., Sun, C., Du, G.: Birman–Wenzl–Murakami algebra and topological basis. Commun. Theor. Phys. 57, 179 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Zhou, C., Xue, K., Gou, L., Sun, C., Wang, G., Hu, T.: Birman–Wenzl–Murakami algebra, topological parameter and Berry phase. Quantum Inf. Process. 11, 1765–1773 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Zhao, Q., Zhang, R.Y., Xue, K., Ge, M.L.: Topological basis associated with BWMA, extremes of \(L_1\)-norm in quantum information and applications in physics. arXiv:1211.6178 (2012)

  31. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  32. Nielsen, M.A.: Universal quantum computation using only projective measurement, quantum memory, and preparation of the \(0\) state. Phys. Lett. A 308, 96 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. Brauer, R.: On algebras which are connected with the semisimple continuous groups. Ann. Math. 38, 857–872 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Y., Zhang, K.: GHZ transform (I): Bell transform and quantum teleportation. arXiv:1401.7009 (2014)

  35. Vollbrecht, K.G.H., Werner, R.F.: Why two qubits are special. J. Math. Phys. 41, 6772–6782 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kraus, B., Cirac, J.I.: Optimal creation of entanglement using a two-qubit gate. Phys. Rev. A 63, 062309 (2001)

    Article  ADS  Google Scholar 

  37. Zanardi, P., Zalka, C., Faoro, L.: Entangling power of quantum evolutions. Phys. Rev. A 62, 030301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. Shende, V.V., Bullock, S.S., Markov, I.L.: Recognizing small-circuit structure in two-qubit operators. Phys. Rev. A 70, 012310 (2004)

    Article  ADS  Google Scholar 

  39. Gottesman, D.: Stabilizer codes and quantum error correction codes. Ph.D. Thesis, CalTech, Pasadena, CA (1997)

  40. Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Inf. Process. Lett. 75, 101–107 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pourkia, A., Batle, J., Raymond Ooi, C.H.: Cyclic groups and quantum logic gates. arXiv:1509.08252 (2015)

Download references

Acknowledgements

The authors thank both editors and referees for their critical comments which make the revised version more complete. This work was supported by the starting Grant 273732 of Wuhan University, P. R. China and is supported by the NSF of China (Grant Nos. 11574237 and 11547310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Appendices

A The Brauer algebra and quantum teleportation

It is well known that the BMW algebra [18, 19] is the algebraic deformation of the Brauer algebra [33]. Quantum teleportation using the Brauer algebra has been explored in [23,24,25], which originally motivated the authors to study quantum teleportation using the BMW algebra and write down the present paper. Here we make a simple sketch on the Brauer algebra and its relation to quantum teleportation.

The Brauer algebra \(D_n(d)\) [33] with the loop parameter d is generated by the Temperley–Lieb idempotents \(e_i\) and the permutations \(v_i\) with \(i=1,\ldots , n-1\). The Temperley–Lieb idempotents \(e_i\) satisfy the algebraic relations,

$$\begin{aligned} \begin{array}{l@{\quad }l} e_{i}^2=e_{i} &{} e_{i}e_{i\pm 1}e_{i}=d^{-2}e_{i}, \\ e_ie_j=e_je_i &{} |i-j|\ge 2, \end{array} \end{aligned}$$
(115)

and the permutation generators \(v_i\) satisfy

$$\begin{aligned} v_i^2=11,\quad v_{i}v_{i\pm 1}v_{i}=v_{i\pm 1}v_{i}v_{i\pm 1}. \end{aligned}$$
(116)

Both generators satisfy the first type of the mixed relations,

$$\begin{aligned} e_{i}v_i=v_{i}e_{i}= e_i, \end{aligned}$$
(117)

and the second type of the mixed relations,

$$\begin{aligned} v_{i\pm 1}v_{i}e_{i\pm 1}=e_{i}v_{i\pm 1}v_{i}=de_{i}e_{i\pm 1}, \end{aligned}$$
(118)

which are called the tangle relations of the Brauer algebra in this paper.

A tensor product representation of the Brauer algebra can be constructed in terms of the Bell state projector \(|\Psi \rangle \langle \Psi |\) (11) and the permutation gate P defined by \(P|ij\rangle =|ji\rangle \) as follows

$$\begin{aligned} e_i= & {} 11^{\otimes (i-1)}\otimes |\Psi \rangle \langle \Psi |\otimes 11^{\otimes (n-i-1)}, \end{aligned}$$
(119)
$$\begin{aligned} v_i= & {} 11^{\otimes (i-1)}\otimes P\otimes 11^{\otimes (n-i-1)}, \end{aligned}$$
(120)

with the loop parameter \(d=2\). Using the Bell state projector \(|\Psi \rangle \langle \Psi |\), we perform the teleportation process in the way

$$\begin{aligned} (|\Psi \rangle \langle \Psi |\otimes 1 1_2)(|\alpha \rangle \otimes |\Psi \rangle ) = \frac{1}{2} |\Psi \rangle \otimes |\alpha \rangle , \end{aligned}$$
(121)

which is a special case of (26) for \(i=j=0\). In terms of the permutation gate P, we define the teleportation operator as \((11_2\otimes P)(P\otimes 11_2)\) to swap the quantum state in the way

$$\begin{aligned} (11_2\otimes P)(P\otimes 11_2)(|\alpha \rangle \otimes |ij\rangle ) = |ij\rangle \otimes |\alpha \rangle . \end{aligned}$$
(122)

With the configuration (21) of the Bell state projector \(|\Psi \rangle \langle \Psi |\) and the extended Temperley–Lieb configuration of the permutation gate P,

(123)

we reformulate the tangle relations (118) of the Brauer algebra as

$$\begin{aligned} (P\otimes 11_2)(11_2\otimes P)\left( |\Psi \rangle \otimes |\alpha \rangle \right) = 2(11_2\otimes |\Psi \rangle \langle \Psi |)\left( |\Psi \rangle \otimes |\alpha \rangle \right) \end{aligned}$$
(124)

which can be reduced into the teleportation Eq. (27); refer to the proof for Corollary 1.

When the permutation gate P is replaced with the Yang–Baxter gate B (9), the above representation of the Brauer algebra is substituted by the representation of the BMW algebra, so the study of quantum teleportation using the Brauer algebra in [23,24,25] naturally points toward the study of quantum teleportation using the BMW algebra in this paper.

B More on the extended Temperley–Lieb configurations of the Yang–Baxter gate B (9)

It is obvious that the extended Temperley–Lieb configurations [23,24,25,26] play the essential roles throughout this paper. In accordance with the reference [26], a Yang–Baxter gate allows various but equivalent extended Temperley–Lieb configurations. For example, three distinct configurations of the Yang–Baxter gate B (9) are presented in Sect. 4.2. Here another two extended Temperley–Lieb configurations of the Yang–Baxter gate B are introduced, and they may be useful elsewhere.

The Yang–Baxter gate B (9) can be related to the Temperley–Lieb projector E (8) in the way

$$\begin{aligned} B=\tilde{U}+2ie^{i\frac{3}{4} \pi }E, \end{aligned}$$
(125)

where \(\tilde{U}\) is a unitary matrix with the decomposition

$$\begin{aligned} \tilde{U}=e^{i\frac{3}{4}\pi }11_4+\sqrt{2}\left( |\psi (10)\rangle \langle \psi (10)|+|\Psi _{R_{2\phi }}\rangle \langle \Psi _{R_{2\phi }}|\right) , \end{aligned}$$
(126)

with \(|\psi (10)\rangle =(11_2\otimes X)|\Psi \rangle \) and \(|\Psi _{R_{2\phi }}\rangle =(11_2\otimes R_{2\phi })|\Psi \rangle \), \(R_{2\phi }\) denoting the phase shift gate (16), and the associated extended Temperley–Lieb configuration is illustrated in

(127)

where the two vertical lines represent for the identity matrix \(11_4\).

Note that the single-qubit gate \(M_{00}\) is defined as \(M_{00}=R_\phi HSH R_\phi \) (18). And insert such decomposition of the \(M_{00}\) gate into the relation (125). After some algebra, the Yang–Baxter gate B takes another form

$$\begin{aligned}&B=e^{i\frac{3}{4}\pi }\left( 11_4-|\psi (10)\rangle \langle \psi (10)|-|\Psi _{R_{2\phi }}\rangle \langle \Psi _{R_{2\phi }}| -e^{-i\phi }|\Psi _{R_{2\phi }}\rangle \langle \psi (10)|\right. \nonumber \\&\qquad \left. +e^{i\phi }|\psi (10)\rangle \langle \Psi _{R_{2\phi }}|\right) , \end{aligned}$$
(128)

and its extended Temperley–Lieb configuration is shown below

(129)

which together with (127) point out the fact that no transparent topological deformations exist between such two configurations, although they are algebraically equivalent.

C How to solve the constraint relation (92)

For example, we make a sketch on how to derive the representation of the BMW algebra, such as (104) and (105) or (106) from the constraint relation (92). Set the unitary bases \(U_{ij}\) as \(U_{ij}=X^i Z^j\) and the unitary base matrix \(U_{mn}\) as \(U_{mn}=11_2\). Then the constraint relation (92) has the form

$$\begin{aligned} \frac{1}{2} \sum _{k,l=0}^1\mu _{ij}\mu _{kl}X^kZ^lX^iZ^jZ^lX^k=X^iZ^j, \end{aligned}$$
(130)

which can be reformulated as

$$\begin{aligned} \frac{1}{2} \sum _{k,l=0}^1\mu _{ij}\mu _{kl}(-1)^{i\cdot l}(-1)^{k\cdot j}X^iZ^j=X^iZ^j. \end{aligned}$$
(131)

Since the unitary bases \(U_{ij}\) satisfy the orthonormal relation (90), we have the constraint equation of the eigenvalues \(\mu _{ij}\) of the Yang–Baxter gate U (91),

$$\begin{aligned} \sum _{k,l=0}^1\mu _{ij}\mu _{kl}(-1)^{i\cdot l}(-1)^{k\cdot j}=2, \end{aligned}$$
(132)

which represent a set of equations given by

$$\begin{aligned} \mu _{00}\left( \mu _{00}+\mu _{01}+\mu _{10}+\mu _{11}\right)= & {} 2;\end{aligned}$$
(133)
$$\begin{aligned} \mu _{01}\left( \mu _{00}+\mu _{01}-\mu _{10}-\mu _{11}\right)= & {} 2;\end{aligned}$$
(134)
$$\begin{aligned} \mu _{10}\left( \mu _{00}-\mu _{01}+\mu _{10}-\mu _{11}\right)= & {} 2;\end{aligned}$$
(135)
$$\begin{aligned} \mu _{11}\left( \mu _{00}-\mu _{01}-\mu _{10}+\mu _{11}\right)= & {} 2. \end{aligned}$$
(136)

Solving the above equations, we have three classes of solutions for the eigenvalues \(\mu _{ij}\) as below.

  • Class 1 \(\mu _{00}=e^{i\phi }\), \(\mu _{01}=e^{-i\phi }\), \(\mu _{10}=e^{-i\phi }\), \(\mu _{11}=-e^{i\phi }\), which determine the Yang–Baxter gate U (91) as

    $$\begin{aligned} U=\sum _{i,j=0}^1\mu _{ij}|\psi (ij)\rangle \langle \psi (ij)|=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \cos \phi &{} 0 &{} 0 &{} i\sin \phi \\ 0 &{} -i\sin \phi &{} \cos \phi &{} 0 \\ 0 &{} \cos \phi &{} -i\sin \phi &{} 0 \\ i\sin \phi &{} 0 &{} 0 &{} \cos \phi \\ \end{array} \right) .\qquad \end{aligned}$$
    (137)
  • Class 2 \(\mu _{00}=e^{i\phi }\), \(\mu _{01}=e^{-i\phi }\), \(\mu _{10}=-e^{i\phi }\), \(\mu _{11}=e^{-i\phi }\), which determine the Yang–Baxter gate U (91) as

    $$\begin{aligned} U=\sum _{i,j=0}^1\mu _{ij}|\psi (ij)\rangle \langle \psi (ij)|=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \cos \phi &{} 0 &{} 0 &{} i\sin \phi \\ 0 &{} -i\sin \phi &{} -\cos \phi &{} 0 \\ 0 &{} -\cos \phi &{} -i\sin \phi &{} 0 \\ i\sin \phi &{} 0 &{} 0 &{} \cos \phi \\ \end{array} \right) .\qquad \end{aligned}$$
    (138)
  • Class 3 \(\mu _{00}=e^{i\phi }\), \(\mu _{01}=-e^{i\phi }\), \(\mu _{10}=e^{-i\phi }\), \(\mu _{11}=e^{-i\phi }\), which determine the Yang–Baxter gate U (91) as

    $$\begin{aligned} U=\sum _{i,j=0}^1\mu _{ij}|\psi (ij)\rangle \langle \psi (ij)|=\left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} 0 &{} 0 &{} 0 &{} e^{i\phi } \\ 0 &{} e^{-i\phi } &{} 0 &{} 0 \\ 0 &{} 0 &{} e^{-i\phi } &{} 0 \\ e^{i\phi } &{} 0 &{} 0 &{} 0 \\ \end{array} \right) . \end{aligned}$$
    (139)

Similarly, when the unitary bases \(U_{mn}\) are the Pauli gates X, Z and XZ, respectively, the other solutions of the Yang–Baxter gate U (91) can be obtained. The collection of all the solutions has been presented in (104) and (105) or (106), or (107) and (108) or (109).

D Reformulation of the constraint relations (92)–(95) and (111)–(114)

Both the constraint relations (92)–(95) and the constraint relations (111)–(114) looking complicated, we introduce the new conventions to simplify their formulations. We define the skew transpose on the product of two matrices as

$$\begin{aligned} (B\, C)^{ST}\equiv B^T\,C^T, \end{aligned}$$
(140)

where the skew transposition ST does not interchange \(B^T\) and \(C^T\) as the ordinary transpose does. With the new notations given by

$$\begin{aligned} \eta _{ijkl}\equiv \frac{1}{2}\mu _{ij}\mu _{kl}; \quad O_{\alpha \beta }\equiv U^\dag _{mn}U_{\alpha \beta }, \end{aligned}$$
(141)

with specified indices m and n, the constraint relations (92)–(95) have the simplified forms

$$\begin{aligned} \sum _{k,l=0}^1\eta _{ijkl}O_{kl}{O^{ST}_{ij}}^\dag O^\dag _{kl}= & {} {O^{ST}_{ij}}^\dag ; \end{aligned}$$
(142)
$$\begin{aligned} \sum _{k,l=0}^1\eta _{ijkl}O^{ST}_{kl}O^\dag _{ij}{O_{kl}^{ST}}^\dag= & {} O^\dag _{ij}; \end{aligned}$$
(143)
$$\begin{aligned} \sum _{k,l=0}^1\eta _{ijkl}O_{kl}O^{ST}_{ij} O_{kl}^\dag= & {} O^{ST}_{ij}; \end{aligned}$$
(144)
$$\begin{aligned} \sum _{k,l=0}^1\eta _{ijkl}O^{ST}_{kl}O_{ij}{O_{kl}^{ST}}^\dag= & {} O_{ij}, \end{aligned}$$
(145)

where the skew transpose ST is commutative with the Hermitian conjugation \(\dag \). As a remark, the notation \(O_{\alpha \beta }\) is introduced to remove the indices m and n so that the algebraic structure of the constraint relations (92)–(95) is presented in a more transparent way. Furthermore, with the new notation

$$\begin{aligned} \eta _{i_1j_1i_2j_2k_1l_1k_2l_2}\equiv \frac{1}{2} G_{i_1j_1,k_1l_1}\tilde{G}_{i_2j_2,k_2l_2}, \end{aligned}$$
(146)

the constraint relations (111)–(114) have more simplified forms

$$\begin{aligned} \sum _{k,l=0}^1\eta _{i_1j_1i_2j_2k_1l_1k_2l_2}O_{i_2j_2}{O^{ST}_{k_1l_1}}^\dag O^\dag _{k_2l_2}= & {} {O^{ST}_{i_1j_1}}^\dag ; \end{aligned}$$
(147)
$$\begin{aligned} \sum _{k,l=0}^1\eta _{i_1j_1i_2j_2k_1l_1k_2l_2}O^{ST}_{i_2j_2}O^\dag _{k_1l_1}{O_{k_2l_2}^{ST}}^\dag= & {} O^\dag _{i_1j_1}; \end{aligned}$$
(148)
$$\begin{aligned} \sum _{k,l=0}^1\eta _{i_1j_1i_2j_2k_1l_1k_2l_2}O_{i_2j_2}O^{ST}_{k_1l_1}O_{k_2l_2}^\dag= & {} O^{ST}_{i_1j_1}; \end{aligned}$$
(149)
$$\begin{aligned} \sum _{k,l=0}^1\eta _{i_1j_1i_2j_2k_1l_1k_2l_2}O^{ST}_{i_2j_2}O_{k_1l_1}{O_{k_2l_2}^{ST}}^\dag= & {} O_{i_1j_1}. \end{aligned}$$
(150)

As a concluding remark, we hope that such above reformulations of the constraint relations (92)–(95) and (111)–(114) are meaningful and useful elsewhere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhang, Y. Quantum teleportation and Birman–Murakami–Wenzl algebra. Quantum Inf Process 16, 52 (2017). https://doi.org/10.1007/s11128-016-1512-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1512-8

Keywords