Abstract
We propose a novel scheme for remote preparation of an arbitrary n-qubit state with the aid of an appropriate local \(2^n\times 2^n\) unitary operation and n maximally entangled two-qubit states. The analytical expression of local unitary operation, which is constructed in the form of iterative process, is presented for the preparation of n-qubit state in detail. We obtain the total successful probabilities of the scheme in the general and special cases, respectively. The feasibility of our scheme in preparing remotely multi-qubit states is explicitly demonstrated by theoretical studies and concrete examples, and our results show that the novel proposal could enlarge the applied range of remote state preparation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)
Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)
Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)
Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair. Chin. Phys. 12, 1354 (2003)
Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)
Li, X.H., Ghose, S.: Analysis of \(N\)-qubit perfectly controlled teleportation schemes from the controllers point of view. Phys. Rev. A 91, 052305 (2015)
Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Quantum Inf. Process. 14, 3835 (2015)
Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Int. J. Theor. Phys. 91, 1711 (2015)
Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)
Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)
Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)
Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)
Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)
Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)
Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)
Killoran, N., Biggerstaff, D.N., Kaltenbaek, R., Resch, K.J., Lütkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)
Zhang, Z.J., Cheung, C.Y.: Minimal classical communication and measurement complexity for quantum information splitting. J. Phys. B At. Mol. Opt. Phys. 45, 205506 (2011)
Wang, Z.Y.: Classical communication cost and probabilistic remote two-qubit state preparation via POVM and W-type states. Quantum Inf. Process. 11, 1585 (2012)
Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)
Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373 (2015)
Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)
Li, J.F., Liu, J.M., Feng, X.L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15, 2115 (2016)
Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)
Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)
Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. 17, 27 (2008)
Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2013)
Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparartion by nucler magtic resonance. Phys. Lett. A 306, 271 (2003)
Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Dada, A., Leach, J., Buller, G., Padgett, M., Andersson, E.: Experimental high dimensional two-photon entanglement and violations of the generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011)
Ibrahim, A.H., Roux, F., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013)
Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256–258 (2014)
Wei, J.H., Qi, B., Dai, H.Y., Huang, J.H., Zhang, M.: Deterministic generation of symmetric multi-qubit Dicke states: an application of quantum feedback control. IET Control Theory Appl. 9, 2500 (2015)
Lu, C.Y., Pan, J.W.: Push-button photon entanglement. Nat. Photon. 8, 174–176 (2014)
Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B At. Mol. Opt. Phys. 45, 205506 (2012)
Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2016)
Rezakhani, A.T., Siadatnejad, S., Ghaderi, A.H.: Separability in asymmetric phase-covariant cloning. Phys. Lett. A 336, 278 (2005)
Kang, P., Dai, H.Y., Wei, J.H., Zhang, M.: Optimal quantum cloning based on the maximin principle by using a priori information. Phys. Rev. A 94, 042304 (2016)
Acknowledgements
The authors thank Z. Y. Xu, J. W. Luo and Y. Zhu for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61134008, 61673389 and 61273202).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wei, J., Shi, L., Ma, L. et al. Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf Process 16, 260 (2017). https://doi.org/10.1007/s11128-017-1708-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1708-6