Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose a novel scheme for remote preparation of an arbitrary n-qubit state with the aid of an appropriate local \(2^n\times 2^n\) unitary operation and n maximally entangled two-qubit states. The analytical expression of local unitary operation, which is constructed in the form of iterative process, is presented for the preparation of n-qubit state in detail. We obtain the total successful probabilities of the scheme in the general and special cases, respectively. The feasibility of our scheme in preparing remotely multi-qubit states is explicitly demonstrated by theoretical studies and concrete examples, and our results show that the novel proposal could enlarge the applied range of remote state preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfuter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  MATH  Google Scholar 

  4. Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  5. Dai, H.Y., Chen, P.X., Li, C.Z.: Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a partial entangled pair. Chin. Phys. 12, 1354 (2003)

    Article  ADS  Google Scholar 

  6. Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)

    Article  ADS  MATH  Google Scholar 

  7. Li, X.H., Ghose, S.: Analysis of \(N\)-qubit perfectly controlled teleportation schemes from the controllers point of view. Phys. Rev. A 91, 052305 (2015)

    Article  ADS  Google Scholar 

  8. Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Quantum Inf. Process. 14, 3835 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Int. J. Theor. Phys. 91, 1711 (2015)

    Article  MATH  Google Scholar 

  10. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  11. Jiang, M., Dong, D.Y.: Multi-party quantum state sharing via various probabilistic channels. Quantum Inf. Process. 12, 237 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285 (2006)

    Article  ADS  Google Scholar 

  13. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    Article  ADS  Google Scholar 

  14. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  15. Yu, C.S., Song, H.S., Wang, Y.H.: Remote preparation of a qudit using maximally entangled states of qubits. Phys. Rev. A 73, 022340 (2006)

    Article  ADS  Google Scholar 

  16. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  17. Killoran, N., Biggerstaff, D.N., Kaltenbaek, R., Resch, K.J., Lütkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)

    Article  ADS  Google Scholar 

  18. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  19. Zhang, Z.J., Cheung, C.Y.: Minimal classical communication and measurement complexity for quantum information splitting. J. Phys. B At. Mol. Opt. Phys. 45, 205506 (2011)

    Google Scholar 

  20. Wang, Z.Y.: Classical communication cost and probabilistic remote two-qubit state preparation via POVM and W-type states. Quantum Inf. Process. 11, 1585 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Li, J.F., Liu, J.M., Feng, X.L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15, 2115 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  27. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. 17, 27 (2008)

    Article  Google Scholar 

  28. Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quantum Inf. Process. 13, 2115 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Peng, X., Zhu, X., Fang, X., Feng, M., Liu, M., Gao, K.: Experimental implementation of remote state preparartion by nucler magtic resonance. Phys. Lett. A 306, 271 (2003)

    Article  ADS  Google Scholar 

  30. Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Dada, A., Leach, J., Buller, G., Padgett, M., Andersson, E.: Experimental high dimensional two-photon entanglement and violations of the generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011)

    Article  Google Scholar 

  33. Ibrahim, A.H., Roux, F., McLaren, M., Konrad, T., Forbes, A.: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312 (2013)

    Article  ADS  Google Scholar 

  34. Vedral, V.: Quantum entanglement. Nat. Phys. 10, 256–258 (2014)

    Article  Google Scholar 

  35. Wei, J.H., Qi, B., Dai, H.Y., Huang, J.H., Zhang, M.: Deterministic generation of symmetric multi-qubit Dicke states: an application of quantum feedback control. IET Control Theory Appl. 9, 2500 (2015)

    Article  MathSciNet  Google Scholar 

  36. Lu, C.Y., Pan, J.W.: Push-button photon entanglement. Nat. Photon. 8, 174–176 (2014)

    Article  ADS  Google Scholar 

  37. Jiang, M., Dong, D.Y.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B At. Mol. Opt. Phys. 45, 205506 (2012)

    Article  ADS  Google Scholar 

  38. Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Rezakhani, A.T., Siadatnejad, S., Ghaderi, A.H.: Separability in asymmetric phase-covariant cloning. Phys. Lett. A 336, 278 (2005)

    Article  ADS  MATH  Google Scholar 

  40. Kang, P., Dai, H.Y., Wei, J.H., Zhang, M.: Optimal quantum cloning based on the maximin principle by using a priori information. Phys. Rev. A 94, 042304 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Z. Y. Xu, J. W. Luo and Y. Zhu for helpful discussions. This work is supported by the Program for National Natural Science Foundation of China (Grant Nos. 61134008, 61673389 and 61273202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Shi, L., Ma, L. et al. Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum Inf Process 16, 260 (2017). https://doi.org/10.1007/s11128-017-1708-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1708-6

Keywords