Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pure state ‘really’ informationally complete with rank-1 POVM

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Busch, P.: Informationally complete-sets of physical quantities. Int. J. Theor. Phys. 30, 1217 (1991)

    Article  MathSciNet  Google Scholar 

  2. Carmeli, C., Heinosaari, T., Schultz, J., Toigo, A.: How many orthonormal bases are needed to distinguish all pure quantum states? Eur. Phys. J. D 69, 179 (2015)

    Article  ADS  Google Scholar 

  3. Carmeli, C., Heinosaari, T., Kech, M., Schultz, J., Toigo, A.: Efficient pure state quantum tomography from five orthonormal bases. Europhys. Lett. 115, 30001 (2016)

    Article  ADS  Google Scholar 

  4. Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de Finetti representation. J. Math. Phys. 43, 4537 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Dawkins, H., Ji, Z., Johnston, N., Kribs, D., Shultz, F., Zeng, B.: Uniqueness of quantum states compatible with given measurement results. Phys. Rev. A 88, 012109 (2013)

    Article  ADS  Google Scholar 

  6. Finkelstein, J.: Pure-state informationally complete and ‘really’ complete measurements. Phys. Rev. A 70, 052107 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Flammia, S.T., Silberfarb, A., Caves, C.M.: Minimal informationally complete measurements for pure states. Found. Phys. 35, 1985 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Goyeneche, D., Cãnas, G., Etcheverry, S., Gómez, E.S., Xavier, G.B., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115, 090401 (2015)

    Article  ADS  Google Scholar 

  9. Gross, D., Liu, Y.K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010)

    Article  ADS  Google Scholar 

  10. Heinosaari, T., Mazzarella, L., Wolf, M.M.: Quantum tomography under prior information Comm. Math. Phys. 318, 355 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Jaming, P.: Uniqueness results in an extension of Paulis phase retrieval problem. Appl. Comput. Harmon. Anal. 37, 413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma, X., et al.: Pure-state tomography with the expectation value of Pauli operators. Phys. Rev. A 93, 032140 (2016)

    Article  ADS  Google Scholar 

  13. Mondragon, D., Voroninski, V.: Determination of all pure quantum states from a minimal number of observables. arXiv:1306.1214 [math-ph] (2013)

  14. Moroz, B.Z.: Reflections on quantum logic. Int. J. Theor. Phys. 22, 329 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Moroz, B.Z.: Erratum: Reflections on quantum logic. Int. J. Theor. Phys. 23, 498 (1984)

    Article  MATH  Google Scholar 

  16. Moroz, B.Z., Perelomov, A.M.: On a problem posed by Pauli. Theor. Math. Phys. 101, 1200 (1994)

    MATH  Google Scholar 

  17. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  18. Pauli, W.: Handbuch der physik. in Handbuch der Physik, vol. 5. Springer, Berlin (1958)

    Google Scholar 

  19. Řeháček, J., Englert, B.-G., Kaszlikowski, D.: Minimal qubit tomography. Phys. Rev. A 70, 052321 (2004)

    Article  ADS  Google Scholar 

  20. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N.Y.) 191, 363 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Key Research and Development Program of China under Grant 2016YFB1000902, National Research Foundation of China (Grant No. 61472412), and Program for Creative Research Group of National Natural Science Foundation of China (Grant no. 61621003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shang, Y. Pure state ‘really’ informationally complete with rank-1 POVM. Quantum Inf Process 17, 51 (2018). https://doi.org/10.1007/s11128-018-1812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1812-2

Keywords