Abstract
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Busch, P.: Informationally complete-sets of physical quantities. Int. J. Theor. Phys. 30, 1217 (1991)
Carmeli, C., Heinosaari, T., Schultz, J., Toigo, A.: How many orthonormal bases are needed to distinguish all pure quantum states? Eur. Phys. J. D 69, 179 (2015)
Carmeli, C., Heinosaari, T., Kech, M., Schultz, J., Toigo, A.: Efficient pure state quantum tomography from five orthonormal bases. Europhys. Lett. 115, 30001 (2016)
Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de Finetti representation. J. Math. Phys. 43, 4537 (2002)
Chen, J., Dawkins, H., Ji, Z., Johnston, N., Kribs, D., Shultz, F., Zeng, B.: Uniqueness of quantum states compatible with given measurement results. Phys. Rev. A 88, 012109 (2013)
Finkelstein, J.: Pure-state informationally complete and ‘really’ complete measurements. Phys. Rev. A 70, 052107 (2004)
Flammia, S.T., Silberfarb, A., Caves, C.M.: Minimal informationally complete measurements for pure states. Found. Phys. 35, 1985 (2005)
Goyeneche, D., Cãnas, G., Etcheverry, S., Gómez, E.S., Xavier, G.B., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115, 090401 (2015)
Gross, D., Liu, Y.K., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010)
Heinosaari, T., Mazzarella, L., Wolf, M.M.: Quantum tomography under prior information Comm. Math. Phys. 318, 355 (2013)
Jaming, P.: Uniqueness results in an extension of Paulis phase retrieval problem. Appl. Comput. Harmon. Anal. 37, 413 (2014)
Ma, X., et al.: Pure-state tomography with the expectation value of Pauli operators. Phys. Rev. A 93, 032140 (2016)
Mondragon, D., Voroninski, V.: Determination of all pure quantum states from a minimal number of observables. arXiv:1306.1214 [math-ph] (2013)
Moroz, B.Z.: Reflections on quantum logic. Int. J. Theor. Phys. 22, 329 (1983)
Moroz, B.Z.: Erratum: Reflections on quantum logic. Int. J. Theor. Phys. 23, 498 (1984)
Moroz, B.Z., Perelomov, A.M.: On a problem posed by Pauli. Theor. Math. Phys. 101, 1200 (1994)
Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Pauli, W.: Handbuch der physik. in Handbuch der Physik, vol. 5. Springer, Berlin (1958)
Řeháček, J., Englert, B.-G., Kaszlikowski, D.: Minimal qubit tomography. Phys. Rev. A 70, 052321 (2004)
Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)
Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. (N.Y.) 191, 363 (1989)
Acknowledgements
This work was partially supported by National Key Research and Development Program of China under Grant 2016YFB1000902, National Research Foundation of China (Grant No. 61472412), and Program for Creative Research Group of National Natural Science Foundation of China (Grant no. 61621003).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, Y., Shang, Y. Pure state ‘really’ informationally complete with rank-1 POVM. Quantum Inf Process 17, 51 (2018). https://doi.org/10.1007/s11128-018-1812-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-1812-2