Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The effects of magnetic and charge noises on the dynamical evolution of the double-dot exchange-only qubit (DEOQ) is theoretically investigated. The DEOQ consisting of three electrons arranged in an electrostatically defined double quantum dot deserves special interest in quantum computation applications. Its advantages are in terms of fabrication, control and manipulation in view of implementation of fast single and two-qubit operations through only electrical tuning. The presence of the environmental noise due to nuclear spins and charge traps, in addition to fluctuations in the applied magnetic field and charge fluctuations on the electrostatic gates adopted to confine the electrons, is taken into account including random magnetic field and random coupling terms in the Hamiltonian. The behavior of the return probability as a function of time for initial conditions of interest is presented. Moreover, through an envelope-fitting procedure on the return probabilities, coherence times are extracted when model parameters take values achievable experimentally in semiconducting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shulman, M., Dial, O., Harvey, S., Bluhm, H., Umansky, V., Yacoby, A.: Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012)

    Article  ADS  Google Scholar 

  2. Veldhorst, M., Hwang, J.C.C., Yang, C.H., Leenstra, A.W., de Ronde, B., Dehollain, J.P., Muhonen, J.T., Hudson, F.E., Itoh, K.M., Morello, A., Dzurak, A.S.: An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014)

    Article  ADS  Google Scholar 

  3. Pla, J., Tan, K., Dehollain, J., Lim, W., Morton, J., Jamieson, D., Dzurak, A., Morello, A.: A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012)

    Article  ADS  Google Scholar 

  4. Maune, B.M., Borselli, M.G., Huang, B., Ladd, T.D., Deelman, P.W., Holabird, K.S., Kiselev, A.A., Alvarado-Rodriguez, I., Ross, R.S., Schmitz, A.E., Sokolich, M., Watson, C.A., Gyure, M.F., Hunter, A.T.: Coherent singlet-triplet oscillations in a silicon-based double quantum dot. Nature 481, 344–347 (2012)

    Article  ADS  Google Scholar 

  5. Bluhm, H., Foletti, S., Neder, I., Rudner, M., Mahalu, D., Umansky, V., Yacoby, A.: Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 \(\mu \)s. Nat. Phys. 7, 109–113 (2011)

    Article  Google Scholar 

  6. Tyryshkin, A., Tojo, S., Morton, J., Riemann, H., Abrosimov, N., Becker, P., Pohl, H.J., Schenkel, T., Thewalt, M., Itoh, K., Lyon, S.: Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater. 11, 143–147 (2012)

    Article  ADS  Google Scholar 

  7. Li, R., Hu, X., You, J.: Controllable exchange coupling between two singlet-triplet qubits. Phys. Rev. B 86, 205306 (2012)

    Article  ADS  Google Scholar 

  8. Coish, W., Loss, D.: Singlet-triplet decoherence due to nuclear spins in a double quantum dot. Phys. Rev. B 72, 125337 (2005)

    Article  ADS  Google Scholar 

  9. Shen, S.Q., Wang, Z.: Phase separation and charge ordering in doped manganite perovskites: projection perturbation and mean-field approaches. Phys. Rev. B 61, 9532 (2000)

    Article  ADS  Google Scholar 

  10. Morton, J.J.L., McCamey, D.R., Eriksson, M.A., Lyon, S.A.: Embracing the quantum limit in silicon computing. Nature 479, 345–353 (2011)

    Article  ADS  Google Scholar 

  11. Kawakami, E., Scarlino, P., Ward, D.R., Braakman, F.R., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A., Vandersypen, L.M.K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014)

    Article  ADS  Google Scholar 

  12. Klymenko, M.V., Rogge, S., Remacle, F.: Multivalley envelope function equations and effective potentials for phosphorus impurity in silicon. Phys. Rev. B 92, 195302 (2015)

    Article  ADS  Google Scholar 

  13. Gamble, J.K., Jacobson, N.T., Nielsen, E., Baczewski, A.D., Moussa, J.E., Montano, I., Muller, R.P.: Multivalley effective mass theory simulation of donors in silicon. Phys. Rev. B 91, 235318 (2015)

    Article  ADS  Google Scholar 

  14. Saraiva, A.L., Baena, A., Calderón, M.J., Koiller, B.: Theory of one and two donors in silicon. J. Phys. Condens. Matter 27, 154208 (2015)

    Article  ADS  Google Scholar 

  15. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  16. DiVincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature (London) 408, 339–342 (2000)

    Article  ADS  Google Scholar 

  17. Taylor, J., Engel, H.A., Dür, W., Yacoby, A., Marcus, C., Zoller, P., Lukin, M.: Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005)

    Article  Google Scholar 

  18. Laird, E., Taylor, J., DiVincenzo, D., Marcus, C., Hanson, M., Gossard, A.: Coherent spin manipulation in an exchange-only qubit. Phys. Rev. B 82, 075403 (2010)

    Article  ADS  Google Scholar 

  19. Levy, J.: Universal quantum computation with spin-1/2 pairs and heisenberg exchange. Phys. Rev. Lett. 89, 147902 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  21. Kikkawa, J., Awschalom, D.: Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313 (1998)

    Article  ADS  Google Scholar 

  22. Amasha, S., MacLean, K., Radu, I.P., Zumbühl, D., Kastner, M., Hanson, M., Gossard, A.: Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett. 100, 046803 (2008)

    Article  ADS  Google Scholar 

  23. Koppens, F., Nowack, K., Vandersypen, L.: Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008)

    Article  ADS  Google Scholar 

  24. Barthel, C., Medford, J., Marcus, C., Hanson, M., Gossard, A.: Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Phys. Rev. Lett. 105, 266808 (2010)

    Article  ADS  Google Scholar 

  25. Tyryshkin, A., Lyon, S., Astashkin, A., Raitsimring, A.: Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 38, 193207 (2003)

    Article  ADS  Google Scholar 

  26. Morello, A., Pla, J.J., Zwanenburg, F.A., Chan, K.W., Tan, K.Y., Huebl, H., Möttönen, M., Nugroho, C.D., Yang, C., van Donkelaar, J.A., Alves, A.D.C., Jamieson, D.N., Escott, C.C., Hollenberg, L.C.L., Clark, R.G., Dzurak, A.S.: Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010)

    Article  ADS  Google Scholar 

  27. Simmons, C., Prance, J., Bael, B.V., Koh, T., Shi, Z., Savage, D., Lagally, M., Joynt, R., Friesen, M., Coppersmith, S., Eriksson, M.: Tunable spin loading and \(T_1\) of a silicon spin qubit measured by single-shot readout. Phys. Rev. Lett. 106, 156804 (2011)

    Article  ADS  Google Scholar 

  28. Xiao, M., House, M., Jiang, H.: Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010)

    Article  ADS  Google Scholar 

  29. van den Berg, J., Nadj-Perge, S., Pribiag, V., Plissard, S., Bakkers, E., Frolov, S., Kouwenhoven, L.: Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 110, 066806 (2013)

    Article  ADS  Google Scholar 

  30. Shi, Z., Simmons, C.B., Prance, J.R., Gamble, J.K., Koh, T.S., Shim, Y.P., Hu, X., Savage, D.E., Lagally, M.G., Eriksson, M.A., Friesen, M., Coppersmith, S.N.: Fast hybrid silicon double-quantum-dot qubit. Phys. Rev. Lett. 108, 140503 (2012)

    Article  ADS  Google Scholar 

  31. Koh, T.S., Gamble, J.K., Friesen, M., Eriksson, M.A., Coppersmith, S.N.: Pulse-gated quantum-dot hybrid qubit. Phys. Rev. Lett. 109, 250503 (2012)

    Article  ADS  Google Scholar 

  32. Kim, D., Shi, Z., Simmons, C.B., Ward, D.R., Prance, J.R., Koh, T.S., Gamble, J.K., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Quantum control and process tomography of a semiconductor quantum dot hybrid qubit. Nature 511, 70–74 (2014)

    Article  ADS  Google Scholar 

  33. Kim, D., Ward, D.R., Simmons, C.B., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit. NPJ Quantum Inf. 1, 15004 (2015)

    Article  ADS  Google Scholar 

  34. Thorgrimsson, B., Kim, D., Yang, Y.C., Smith, L.W., Simmons, C.B., Ward, D.R., Foote, R.H., Corrigan, J., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., Eriksson, M.A.: Extending the coherence of a quantum dot hybrid qubit. NPJ Quantum Inf. 3, 32 (2017)

    ADS  Google Scholar 

  35. Rotta, D., Sebastiano, F., Charbon, E., Prati, E.: Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures. NPJ Quantum Inf. 3, 26 (2017)

    Article  ADS  Google Scholar 

  36. Rotta, D., De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Maximum density of quantum information in a scalable CMOS implementation of the hybrid qubit architecture. Quantum Inf. Process. 15, 2253–2274 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Ferraro, E., Fanciulli, M., De Michielis, M.: Controlled-NOT gate sequences for mixed spin qubit architectures in a noisy environment. Quantum Inf. Process. 16, 277 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. De Michielis, M., Ferraro, E., Fanciulli, M., Prati, E.: Universal set of quantum gates for double-dot exchange-only spin qubits with intradot coupling. J. Phys. A Math. Theor. 48, 065304 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Ferraro, E., De Michielis, M., Mazzeo, G., Fanciulli, M., Prati, E.: Effective Hamiltonian for the hybrid double quantum dot qubit. Quantum Inf. Process. 13, 1155–1173 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Jefferson, J., Häusler, W.: Effective charge-spin models for quantum dots. Phys. Rev. B 54, 4936 (1996)

    Article  ADS  Google Scholar 

  41. Das Sarma, S., Throckmorton, R.E., Wu, Y.L.: Dynamics of two coupled semiconductor spin qubits in a noisy environment. Phys. Rev. B 94, 045435 (2016)

    Article  ADS  Google Scholar 

  42. Throckmorton, R.E., Barnes, E., Das Sarma, S.: Environmental noise effects on entanglement fidelity of exchange-coupled semiconductor spin qubits. Phys. Rev. B 95, 085405 (2017)

    Article  ADS  Google Scholar 

  43. Wu, Y.L., Das Sarma, S.: Decoherence of two coupled singlet-triplet spin qubits. Phys. Rev. B 96, 165301 (2017)

    Article  ADS  Google Scholar 

  44. Mehl, S.: Two-qubit pulse gate for the three-electron double quantum dot qubit. Phys. Rev. B 91, 035430 (2015)

    Article  ADS  Google Scholar 

  45. Barnes, E., Rudner, M.S., Martins, F., Malinowski, F.K., Marcus, C.M., Kuemmeth, F.: Filter function formalism beyond pure dephasing and non-Markovian noise in singlet-triplet qubits. Phys. Rev. B 93, 121407(R) (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been funded from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 688539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ferraro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, E., Fanciulli, M. & De Michielis, M. Semiconducting double-dot exchange-only qubit dynamics in the presence of magnetic and charge noises. Quantum Inf Process 17, 130 (2018). https://doi.org/10.1007/s11128-018-1896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1896-8

Keywords