Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some limit laws for quantum walks with applications to a version of the Parrondo paradox

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum walker moves on the integers with four extra degrees of freedom, performing a coin-shift operation to alter its internal state and position at discrete units of time. The time evolution is described by a unitary process. We focus on finding the limit probability law for the position of the walker and study it by means of Fourier analysis. The quantum walker exhibits both localization and a ballistic behavior. Our two results are given as limit theorems for a 2-period time-dependent walk, and they describe the location of the walker after it has repeated the unitary process a large number of times. The theorems give an analytical tool to study some of the Parrondo-type behavior in a quantum game which was studied by Rajendran and Benjamin (R Soc Open Sci 5:171599, 2018) by means of very nice numerical simulations. With our analytical tools at hand we can easily explore the “phase space” of parameters of one of the games, similar to the winning game in their papers. We include numerical evidence that our two games, similar to theirs, exhibit a Parrondo-type paradox.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rajendran, J., Benjamin, C.: Implementing Parrondo’s paradox with two-coin quantum walks. R. Soc. Open Sci. 5, 171599 (2018)

    Article  Google Scholar 

  2. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  ADS  Google Scholar 

  3. Kendon, V.: A random walk approach to quantum algorithms. Philos. Trans. R. Soc. A 364, 3407–3422 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Venegas-Andraca, S.: Quantum Walks for Computer Scientists, vol. 1. Morgan & Claypool Publishers, San Rafael (2008)

    MATH  Google Scholar 

  5. Venegas-Andraca, S.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Machida, T., Konno, N.: Limit theorem for a time-dependent coined quantum walk on the line. In: Peper, F., et al. (eds.) IWNC 2009, Proceedings in Information and Communications Technology, 2, pp. 226–235 (2010)

  7. Konno, N., Machida, T.: Limit theorems for quantum walks with memory. Quantum Inf. Comput. 10(11&12), 1004–1017 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Machida, T.: Limit theorems of a 3-state quantum walk and its application for discrete uniform measures. Quantum Inf. Comput. 15(5&6), 406–418 (2015)

    MathSciNet  Google Scholar 

  9. Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69(2), 026119 (2004)

    Article  ADS  Google Scholar 

  10. Nayak, A., Vishwanath, A.: Quantum walk on the line. DIMACS Technical Reports, 43 (2000)

  11. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33rd Annual ACM STOC, pp. 37–49, ACM, New York (2001)

  12. Carteret, H., Ismail, M., Richmond, B.: Three routes to the exact aymptotics for the one dimensional random quantum walk. J. Phys. A 36, 8775–8795 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Liu, C.: Asymptotic distributions of quantum walks on the line with two entangled coins. Quantum Inf. Process. 11(5), 1193–1205 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dym, H., McKean, H.P., jr, H.P.: Fourier Series and Integrals. Academic Press, Cambridge (1972)

    MATH  Google Scholar 

  15. Konno, N.: Quantum walks. In: Quantum Potential Theory. Springer Lectures in Mathematics (2008)

  16. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  17. Selvitella, A.: The Simpson’s paradox in quantum mechanics. J. Math. Phys. 58, 032101 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Feynman, R., Leighton, P., Sands, M.: Feynman Lectures on Physics, vol. 1. Addison-Wesley, Reading (1963)

    MATH  Google Scholar 

  19. Parrondo, J., Espagnol, P.: Criticism of Feynman’ analysis of the ratchet as an engine. Am. J. Phys. 64, 837–847 (1996)

    Article  Google Scholar 

  20. Parrondo, J., Dinis, L.: Brownian motion and gambling: from ratches to paradoxical games. Contemp. Phys. 64(2), 147–157 (2004)

    Article  ADS  Google Scholar 

  21. Etheir, S.: The Doctrine of Chances. Springer, Berlin (2010)

    Book  Google Scholar 

  22. Harmer, G.P., Abbott, D.: A review of Parrondo’s paradox. Fluct. Noise Lett. 158(2), R71–R107 (2002)

    Article  Google Scholar 

  23. Meyer, D.A.: Noisy quantum Parrondo game, Fluctuations and Noise in Photonics and Quantum Optics. In: Proceedings of SPIE 5111, pp. 344–351 (2003)

  24. Meyer, D.A., Blumer, H.: Parrondo games as lattice gas automata. J. Stat. Phys. 107(1–2), 225–239 (2002)

    Article  MATH  Google Scholar 

  25. Flitney, A.P., Ng, J., Abbott, D.: Quantum Parrondo’s games. Physica A 314, 35–42 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Harmer, G.P., Abbott, D.: Quantum Parrondo games. Stat. Sci. 14(2), 206–213 (1999)

    Article  Google Scholar 

  27. Chandrashekar, C.M., Banerjee, S.: Parrondo’s game usng a discrete-time quantum walk. Phys. Lett. A 375(14), 1553–1558 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Flitney, A.P.: Quantum Parrondo’s games using quantum walks. arXiv:1209.2252 (2012)

  29. Li, M., Zhang, Y., Guo, G.: Quantum Parrondo’s games constructed by quantum random walks. Fluct. Noise Lett. 12(4), 1350024 (2013)

    Article  Google Scholar 

  30. Pejic, M.: Bayesian quantum networks with application to games displaying Parrondo’s paradox. arXiv:1503.08868 (2015)

  31. Grünbaum, F.A., Pejic, M.: Maximal Parrondo’s paradox for classical and quantum Markov chains. Lett. Math. Phys. 106(2), 251–267 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Takuya Machida is supported by JSPS Grant-in-Aid for Young Scientists (B) (No.16K17648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Machida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machida, T., Grünbaum, F.A. Some limit laws for quantum walks with applications to a version of the Parrondo paradox. Quantum Inf Process 17, 241 (2018). https://doi.org/10.1007/s11128-018-2009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2009-4

Keywords