Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Qubit mapping of one-way quantum computation patterns onto 2D nearest-neighbor architectures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Distinct practical advantages of the one-way quantum computation (1WQC) have attracted the attention of many researchers. To physically realize a 1WQC pattern, its qubits should be mapped onto a quantum physical environment. The nearest-neighbor architectures are suitable for implementing 1WQC patterns because they provide nearest-neighbor sufficient interactions for full entanglement that are necessary for highly entangled configuration of 1WQC. To make a 1WQC nearest-neighbor compliant, swap gates are needed to bring the interacting qubits of a gate adjacent. More swap gates result in the higher latency and error probability. Therefore, an efficient mapping of qubits of a 1WQC pattern onto qubits provided by a nearest-neighbor architecture can dramatically reduce the number of swaps. This motivates us to propose an approach that maps qubits of a 1WQC pattern to qubits of a two-dimensional nearest-neighbor architecture. Our evaluations show that the proposed mapping approach reduces the number of swaps in the range of 0–96.2% in comparison with the best in the literature for the attempted benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The sum of the horizontal and vertical distances between points on a grid.

  2. Quantum Design Automation Lab (QDA).

References

  1. Benenti, G.: Principles of Quantum Computation and Information: Basic Tools and Special Topics, vol. 2. World Scientific, Singapore (2007)

    Book  Google Scholar 

  2. Nakahara, M., Ohmi, T.: Quantum Computing: From Linear Algebra to Physical Realizations. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  4. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  5. Casati, G., Shepelyansky, D.L., Zoller, P.: Quantum computers, algorithms and chaos, vol. 162. IOS Press, Amsterdam (2006)

    MATH  Google Scholar 

  6. Saffman, M., Walker, T.: Analysis of a quantum logic device based on dipole–dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A 72, 022347 (2005)

    Article  ADS  Google Scholar 

  7. Strauch, F.W., Johnson, P.R., Dragt, A.J., Lobb, C., Anderson, J., Wellstood, F.: Quantum logic gates for coupled superconducting phase qubits. Phys. Rev. Lett. 91, 167005 (2003)

    Article  ADS  Google Scholar 

  8. Chan, T.M., Hoffmann, H.-F., Kiazyk, S., Lubiw, A.: Minimum length embedding of planar graphs at fixed vertex locations. In: International Symposium on Graph Drawing, pp. 376–387 (2013)

  9. Briegel, H.J., Browne, D.E., Dür, W., Raussendorf, R., Van den Nest, M.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  10. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C., Munro, W.J., et al.: Architectural design for a topological cluster state quantum computer. N. J. Phys. 11, 083032 (2009)

    Article  Google Scholar 

  11. Joo, J., Alba, E., García-Ripoll, J.J., Spiller, T.P.: Generating and verifying graph states for fault-tolerant topological measurement-based quantum computing in two-dimensional optical lattices. Phys. Rev. A 88, 012328 (2013)

    Article  ADS  Google Scholar 

  12. Mohammadzadeh, N., Sedighi, M., Zamani, M.S.: Quantum physical synthesis: improving physical design by netlist modifications. Microelectron. J. 41, 219–230 (2010)

    Article  Google Scholar 

  13. Mohammadzadeh, N., Zamani, M.S., Sedighi, M.: Quantum circuit physical design methodology with emphasis on physical synthesis. Quantum Inf. Process. 13, 445–465 (2014)

    Article  ADS  Google Scholar 

  14. Mohammadzadeh, N., Taqavi, E.: Quantum circuit physical design flow for the multiplexed trap architecture. Microprocess. Microsyst. 45, 23–31 (2016)

    Article  Google Scholar 

  15. Mohammadzadeh, N.: Physical design of quantum circuits in ion trap technology—a survey. Microelectron. J. 55, 116–133 (2016)

    Article  Google Scholar 

  16. Farghadan, A., Mohammadzadeh, N.: Quantum circuit physical design flow for 2D nearest-neighbor architectures. Int. J. Circuit Theory Appl. 45, 989–1000 (2017)

    Article  Google Scholar 

  17. Lin, C.-C., Sur-Kolay, S., Jha, N.K.: PAQCS: Physical design-aware fault-tolerant quantum circuit synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23, 1221–1234 (2015)

    Article  Google Scholar 

  18. Campbell, E.T., Fitzsimons, J.: An Introduction to One-Way Quantum Computing in Distributed Architectures, arXiv preprint arXiv:0906.2725

  19. Benjamin, S., Eisert, J., Stace, T.: Optical generation of matter qubit graph states. N. J. Phys. 7, 194 (2005)

    Article  MathSciNet  Google Scholar 

  20. Chen, J., Wang, L., Charbon, E., Wang, B.: Programmable architecture for quantum computing. Phys. Rev. A 88, 022311 (2013)

    Article  ADS  Google Scholar 

  21. Clark, S., Alves, C.M., Jaksch, D.: Efficient generation of graph states for quantum computation. N. J. Phys. 7, 124 (2005)

    Article  Google Scholar 

  22. Kay, A., Pachos, J.K., Adams, C.S.: Graph-state preparation and quantum computation with global addressing of optical lattices. Phys. Rev. A 73, 022310 (2006)

    Article  ADS  Google Scholar 

  23. Maslov, D., Falconer, S.M., Mosca, M.: Quantum circuit placement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 752–763 (2008)

    Article  Google Scholar 

  24. Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication overhead in 2D quantum architectures. In: Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific, 2014, pp. 495–500

  25. Alfailakawi, M.G., Ahmad, I., Hamdan, S.: Harmony-search algorithm for 2D nearest neighbor quantum circuits realization. Exp. Syst. Appl. 61, 16–27 (2016)

    Article  Google Scholar 

  26. Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications, vol. 191. Springer, Berlin (2009)

    Google Scholar 

  27. Shrivastwa, R.R., Datta, K., Sengupta, I.: Fast qubit placement in 2D architecture using nearest neighbor realization. In: 2015 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), 2015, pp. 95–100

  28. Zulehner, A., Paler, A., Wille, R.: Efficient Mapping of Quantum Circuits to the IBM QX Architectures, arXiv preprint arXiv:1712.04722

  29. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. J. ACM (JACM) 54, 8 (2007)

    Article  MathSciNet  Google Scholar 

  30. Danos, V., Kashefi, E., Panangaden, P., Perdrix, S.: Extended measurement calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation. Cambridge University Press, Cambridge, pp. 235–310. (2009). https://doi.org/10.1017/CBO9781139193313.008

    Chapter  Google Scholar 

  31. Pius, E.: Automatic parallelisation of quantum circuits using the measurement based quantum computing model. In: High Performance Computing (2010)

  32. Newman, M.E.: The mathematics of networks. New Palgrave Encycl. Econ. 2, 1–12 (2008)

    Google Scholar 

  33. Houshmand, M., Samavatian, M.H., Zamani, M.S., Sedighi, M.: Extracting one-way quantum computation patterns from quantum circuits. In: 2012 16th CSI International Symposium on Computer Architecture and Digital Systems (CADS), 2012, pp. 64–69

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Mohammadzadeh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanaei, S., Mohammadzadeh, N. Qubit mapping of one-way quantum computation patterns onto 2D nearest-neighbor architectures. Quantum Inf Process 18, 56 (2019). https://doi.org/10.1007/s11128-019-2177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2177-x

Keywords