Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Paired quantum Fourier transform with log2N Hadamard gates

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum Fourier transform (QFT) is perhaps the furthermost central building block in creation quantum algorithms. In this work, we present a new approach to compute the standard quantum Fourier transform of the length \( N = 2^{r} , \;r > 1 \), which also is called the r-qubit discrete Fourier transform. The presented algorithm is based on the paired transform developed by authors. It is shown that the signal-flow graphs of the paired algorithms could be used for calculating the quantum Fourier and Hadamard transform with the minimum number of stages. The calculation of all components of the transforms is performed by the Hadamard gates and matrices of rotations and all simple NOT gates. The new presentation allows for implementing the QFT (a) by using only the r Hadamard gates and (b) organizing parallel computation in r stages. Also, the circuits for the length-2r fast Hadamard transform are described. Several mathematical illustrative examples of the order the \( N = 4,\;8 \), and 16 cases are illustrated. Finally, the QFT for inputs being two, three and four qubits is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  3. Young R.C.D., Birch P.M., Chatwin C.R.: A simplification of the Shor quantum factorization algorithm employing a quantum Hadamard transform. In: Proceedings of SPIE 10649, Pattern Recognition and Tracking XXIX, 1064903, p. 11. Orlando, Florida, USA (2018)

  4. Gong, L.H., He, X.T., Tan, R.C., Zhou, Z.H.: Single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform”. Int. J. Theor. Phys. 57, 59–73 (2018)

    Article  MATH  Google Scholar 

  5. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 1–14 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Yang, Y.G., Jia, X., Xu, P., et al.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Coppersmith D.: An approximate Fourier transform useful in quantum factoring. Technical, Report RC19642, IBM (1994)

  11. Chan, I.C., Ho, K.L.: Split vector-radix fast Fourier transform. IEEE Trans. Signal Process. 40(8), 2029–2040 (1992)

    Article  ADS  MATH  Google Scholar 

  12. Cheung D.: Using generalized quantum Fourier transforms in quantum phase estimation algorithms, Thesis. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.9698&rep=rep1&type=pdf

  13. Marquezinoa, F.L., Portugala, R., Sasse, F.D.: Obtaining the quantum Fourier transform from the classical FFT with QR decomposition. J. Comput. Appl. Math. 235(1), 74–81 (2014)

    Article  MathSciNet  Google Scholar 

  14. Barenco, A., Ekert, A., Suominen, K.-A., Törmä, P.: Approximate quantum Fourier transform and decoherence. Phys. Rev. A 54, 139–146 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yoran, N.N., Short, A.: Efficient classical simulation of the approximate quantum Fourier transform. Phys. Rev. A 76, 042321 (2007)

    Article  ADS  Google Scholar 

  16. Cleve R., Watrous J.: Fast parallel circuits for the quantum Fourier transform. In: Proceedings of IEEE 41st Annual Symposium on Foundations of Computer Science, pp. 526–536, Redondo Beach, CA, USA (2000)

  17. Karafyllidis, I.G.: Visualization of the quantum Fourier transform using a quantum computer simulator. Quantum Inf. Process. 2(4), 271–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muthukrishnan, A., Stroud Jr., C.: Quantum fast fourier transform using multilevel atoms. J. Mod. Optics 49, 2115–2127 (2002)

    Article  ADS  MATH  Google Scholar 

  19. Heo, J., Kang, M.S., Hong, C.H., et al.: Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect. Quantum Inf. Process. 15(12), 4955–4971 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Zilic, Z., Radecka, K.: Scaling and better approximating quantum fourier transform by higher radices. IEEE Trans. Comput. 56(2), 202–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grigoryan, A.M.: New algorithms for calculating discrete Fourier transforms. USSR Comput. Math. Math. Phys. 26(5), 84–88 (1986)

    Article  MATH  Google Scholar 

  22. Grigoryan, A.M.: An algorithm of computation of the one-dimensional discrete Fourier transform. Izvestiya VUZov SSSR, Radioelectronica 31(5), 47–52 (1988)

    Google Scholar 

  23. Grigoryan, A.M.: 2-D and 1-D multi-paired transforms: frequency-time type wavelets. IEEE Trans. Signal Process. 49(2), 344–353 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Grigoryan, A.M., Grigoryan, M.M.: Brief Notes in Advanced DSP: Fourier Analysis with MATLAB. CRC Press Taylor and Francis Group, Boca Raton (2009)

    MATH  Google Scholar 

  25. Grigoryan, A.M., Agaian, S.S.: Split manageable efficient algorithm for Fourier and Hadamard transforms. IEEE Trans. Signal Process. 48(1), 172–183 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Grigoryan, A.M., Agaian, S.S.: Practical Quaternion and Octonion Imaging with MATLAB. SPIE Press, Bellingham (2009)

    Google Scholar 

  27. Browne, D.E.: Efficient classical simulation of the semi-classical quantum Fourier transform. New J. Phys. 9, 146 (2007)

    Article  ADS  Google Scholar 

  28. Li, H.S., Fan, P., Xia, H., Song, S., He, X.: The quantum Fourier transform based on quantum vision representation. Quantum Inf. Process. 17, 333 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Agaian S.S., Klappenecker A.: Quantum computing and a unified approach to fast unitary transforms. In: Proceedings of SPIE 4667, Image Processing: Algorithms and Systems, p. 11 (2002)

  30. Perez, L.R., Garcia-Escartin, J.C.: Quantum arithmetic with the quantum Fourier transform. Quantum Inf. Process. 16, 14 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Maynard, C.E., Pius, E.: A quantum multiply-accumulator. Quantum Inf. Process. 13(5), 1127–1138 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Grigoryan, A.M.: Two classes of elliptic discrete Fourier transforms: properties and examples. J. Math. Imaging Vis. 0235(39), 210–229 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Grigoryan, A.M., Agaian, S.S.: Tensor transform-based quaternion Fourier transform algorithm. Inf. Sci. 320, 62–74 (2015). https://doi.org/10.1016/j.ins.2015.05.018

    Article  MathSciNet  MATH  Google Scholar 

  34. Grigoryan A.M., S.S. Agaian S.S.: 2-D Octonion discrete Fourier transform: fast algorithms. In: Proceedings of IS&T International Symposium, Electronic Imaging: Algorithms and Systems XV, Burlingame, CA (2017)

  35. Grigoryan A.M., Agaian S.S.: 2-D left-side quaternion discrete Fourier transform fast algorithms. In: Proceedings of IS&T International Symposium, 2016 Electronic Imaging: Algorithms and Systems XIV, San Francisco, California (2016)

  36. Grigoryan, A.M., Agaian, S.S.: Multidimensional Discrete Unitary Transforms: Representation, Partitioning, and Algorithms. Marcel Dekker, New York (2003)

    Book  MATH  Google Scholar 

  37. Agaian, S.S.: Hadamard Matrices and Their Applications, Lecture Notes in Mathematics, vol. 1168. Springer, New York (1985)

    Book  Google Scholar 

  38. Agaian, S.S., Sarukhanyan, H.G., Egiazarian, K.O., Astola, J.: Hadamard Transforms. SPIE Press, Bellingham (2011)

    Book  MATH  Google Scholar 

  39. Grigoryan, A.M.: An algorithm of computation of the one-dimensional discrete Hadamard transform. Izvestiya VUZov SSSR Radioelectron. USSR Kiev 34(8), 100–103 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artyom M. Grigoryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryan, A.M., Agaian, S.S. Paired quantum Fourier transform with log2N Hadamard gates. Quantum Inf Process 18, 217 (2019). https://doi.org/10.1007/s11128-019-2322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2322-6

Keywords