Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Two-particle indistinguishability and identification of boson and fermion species: a Fisher information approach

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a study on two-particle indistinguishability and particle species identification by introducing a Fisher information (FI) approach—in which two particles pass through a two-wave mixing operation and the number of particles is counted in one of the output modes. In our study, we first show that FI can reproduce the Hong–Ou–Mandel (HOM) effect with two bosons or two fermions. In particular, it is found that even though bosons and fermions exhibit different physical behavior (i.e., “bunching” or “anti-bunching”) due to their indistinguishability, the aspects of HOM-like dip are quantitatively same. We then provide a simple method for estimating the degree of two-particle indistinguishability in a Mach–Zehnder interferometer-type setup. The presented method also enables us to identify whether the particles are bosons or fermions. Our study will provide useful primitives for various studies of boson and fermion characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Here we do not consider the case of \(\phi =0\).

  2. We note that such a definition by using the maximum FI occurs, frequently, in some physical contexts (see Refs. [1, 32]).

  3. Note that \(c_2~(\text {and}~c_1) \in [0,1]\), whereas \(c_0 \in \left[ \frac{1}{2}, 1\right] \).

References

  1. Frieden, B.R.: Physics from Fisher Information; A Unification. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  2. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222 (2011)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Caves, C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Oh, C., Lee, C., Rockstuhl, C., Jeong, H., Kim, J., Nha, H., Lee, S.-Y.: Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology. npj Quantum Inf. 5, 10 (2019)

    Article  ADS  Google Scholar 

  6. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  7. Lu, X.M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  8. Frowis, F., Dur, W.: Measures of macroscopicity for quantum spin systems. New J. Phys. 14, 093039 (2012)

    Article  ADS  Google Scholar 

  9. Konig, R., Smith, G.: Limits on classical communication from quantum entropy power inequalities. Nat. Photonics 7, 142 (2013)

    Article  ADS  Google Scholar 

  10. Wang, T.L., Wu, L.N., Yang, W., Jin, G.R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys. 16, 063039 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Czajkowski, J., Jarzyna, M., Demkowicz-Dobrzanski, R.: Super-additivity in communication of classical information through quantum channels from a quantum parameter estimation perspective. New J. Phys. 19, 073034 (2017)

    Article  ADS  Google Scholar 

  12. Jarzyna, M.: Classical capacity per unit cost for quantum channels. Phys. Rev. A 96, 032340 (2017)

    Article  ADS  Google Scholar 

  13. Pezze, L., Smerzi, A.: Entanglement, nonlinear dynamics, and the Heisenberg limit. Phys. Rev. Lett. 102, 100401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzè, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2011)

    Article  ADS  Google Scholar 

  15. Li, N., Luo, S.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  16. Hong, Y., Luo, S., Song, H.: Detecting k-nonseparability via quantum Fisher information. Phys. Rev. A 91, 042313 (2015)

    Article  ADS  Google Scholar 

  17. Suzuki, J.: Entanglement detection and parameter estimation of quantum channels. Phys. Rev. A 94, 042306 (2016)

    Article  ADS  Google Scholar 

  18. Kim, S., Li, L., Kumar, A., Wu, J.: Characterizing nonclassical correlations via local quantum Fisher information. Phys. Rev. A 97, 032326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hall, M.J.W.: Quantum properties of classical Fisher information. Phys. Rev. A 62, 012107 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yuan, H., Fung, C.H.F.: Fidelity and Fisher information on quantum channels. New J. Phys. 19, 113039 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Franco, R.L., Compagno, G.: Indistinguishability of elementary systems as a resource for quantum information processing. Phys. Rev. Lett. 120, 240403 (2018)

    Article  Google Scholar 

  22. Kurzyński, P., et al.: Particle addition and subtraction channels and the behavior of composite particles. New J. Phys. 14, 093047 (2012)

    Article  ADS  Google Scholar 

  23. Tichy, M.C.: Interference of identical particles from entanglement to boson-sampling. J. Phys. B 47, 103001 (2014)

    Article  ADS  Google Scholar 

  24. Lee, S.-Y., et al.: Quantum information approach to Bose–Einstein condensation of composite bosons. New J. Phys. 17, 113015 (2015)

    Article  ADS  Google Scholar 

  25. Zhang, G., Zhu, H.: Surpassing the shot-noise limit by homodyne-mediated feedback. Opt. Lett. 41, 3932 (2016)

    Article  ADS  Google Scholar 

  26. Blasiak, P., Markiewicz, M.: arXiv:1807.05546 (2018)

  27. Karczewski, M., Markiewicz, M., Kaszlikowski, D., Kurzyński, P.: Generalized probabilistic description of noninteracting identical particles. Phys. Rev. Lett. 120, 080401 (2018)

    Article  ADS  Google Scholar 

  28. Karczewski, M., Kaszlikowski, D., Kurzyński, P.: Monogamy of particle statistics in tripartite systems simulating bosons and fermions. Phys. Rev. Lett. 121, 090403 (2018)

    Article  ADS  Google Scholar 

  29. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  30. Loudon, R.: Fermion and boson beam-splitter statistics. Phys. Rev. A 58, 4904 (1998)

    Article  ADS  Google Scholar 

  31. Ji, Y., Chung, Y., Sprinzak, D., Helblum, M., Mahalu, D., Shtrikman, H.: An electronic Mach–Zehnder interferometer. Nature 422, 415 (2003)

    Article  ADS  Google Scholar 

  32. Frieden, B.R., Cocke, W.J.: Foundation for Fisher-information-based derivations of physical laws. Phys. Rev. E 54, 257 (1996)

    Article  ADS  Google Scholar 

  33. Karczewski, M., Pisarczyk, R., Kurzyński, P.: Genuine multipartite indistinguishability and its detection via generalized Hong–Ou–Mandel effect (2018). arXiv:1812.01356

  34. Zukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-particle entanglements via multiport beam splitters. Phys. Rev. A 55, 2564 (1997)

    Article  ADS  Google Scholar 

  35. Spagnolo, N., et al.: Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 4, 1606 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.-Y. L. and J.B. would like to thank Changhyoup Lee, Jaeyoon Cho, Tomasz Paterek, Junghee Ryu, and Marcin Wieśniak for useful discussions and comments. We acknowledge the financial support of the Basic Science Research Program through the National Research Foundation of Korea (NRF) (No. 2018R1D1A1B07048633).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Yong Lee or Jeongho Bang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Distinguishing an input pure state from an input mixed state by Fisher information

Appendix A: Distinguishing an input pure state from an input mixed state by Fisher information

For simplicity, here we count the number of particles without discriminating their polarizations or spins. For bosons, we start with the single-photon of mode b in the superposed state of \(\cos {\theta }\left| V\right\rangle _b+\sin {\theta }\left| H\right\rangle _b\). When the single photon is in a pure state \(\alpha \left| V\right\rangle _a+\beta \left| H\right\rangle _a\), we obtain the probability distributions by counting the number of photons only in the output mode \(b'\), such that:

$$\begin{aligned} P_{b'}(0|\phi )= & {} P_{b'}(2|\phi )=\frac{1-\cos {2\theta }}{4}\left( c_0+\frac{c_3}{2}\right) , \nonumber \\ P_{b'}(1|\phi )= & {} \frac{1}{2}\left( 1 + c_1 \cos {2\phi }+ c_2\cos ^2{\phi }-c_3\right) . \end{aligned}$$
(25)

With the above probability distributions, we can have the FI of the phase parameter \(\phi \) as

$$\begin{aligned} F_{\text {pure}}(\phi )=2\left( c_0 + \frac{c_3}{2} \right) ^2 \sin ^2{2\phi }\left[ \frac{1}{\left( c_0+\frac{c_3}{2}\right) \left( 1-\cos {2\phi }\right) }+\frac{1}{2-2\left( c_0+\frac{c_3}{2}\right) \sin ^2{\phi }}\right] ,\nonumber \\ \end{aligned}$$
(26)

where \(c_0=\frac{1}{2}(1+c_1)\), \(c_1=\left| \alpha \right| ^2\cos ^2{\theta }+\left| \beta \right| ^2\sin ^2{\theta }\), \(c_2=\left| \alpha \right| ^2\sin ^2{\theta }+\left| \beta \right| ^2\cos ^2{\theta }\), and \(c_3=(\alpha \beta ^{*}+\beta \alpha ^{*})\sin {\theta }\cos {\theta }\). Here, note that the factor \(c_3\) is related to the interference, and hence the purity, of the input state of the mode a. On the other hand, for a mixed state \(\left| \alpha \right| ^2\left| V\right\rangle _a\left\langle V\right| +\left| \beta \right| ^2\left| H\right\rangle _a\left\langle H\right| \), the FI is given by

$$\begin{aligned} F_{\text {mix}}(\phi )=2c_0^2 \sin ^2{2\phi }\left[ \frac{1}{c_0 \left( 1-\cos {2\phi }\right) } +\frac{1}{2-2c_0 \sin ^2{\phi }}\right] . \end{aligned}$$
(27)

Consequently, we can figure out the difference between Eqs. (26) and  (27) in terms of the existence of the interference with \(c_3\) (as long as \(\phi \ne \frac{\pi }{2}\) and \(\phi \ne \pi \)). As an example, in Fig. 5 we depict the 3D graphs of (left) \(F_{\text {pure}}(\phi )\) and (right) \(F_{\text {mix}}(\phi )\) for \(\phi =0.1\).

Fig. 5
figure 5

The graphs of (left) \(F_{\text {pure}}(\phi )\) and (right) \(F_{\text {mix}}(\phi )\) evaluated for the pure and mixed bosonic input states in a-mode. Here, the phase \(\phi \) is set to be 0.1

Fig. 6
figure 6

The graphs of (left) \(F_{\text {pure}}(\phi )\) and (right) \(F_{\text {mix}}(\phi )\) evaluated for the pure and mixed fermionic input states in a-mode. Here, we also set \(\phi = 0.1\)

For fermions, we start with the single-electron of mode b in the superposed state of \(\cos {\theta }\left| \uparrow \right\rangle _b+\sin {\theta }\left| \downarrow \right\rangle _b\). When the single-electron of mode a is in a pure state of \(\alpha \left| \uparrow \right\rangle _a+\beta \left| \downarrow \right\rangle _a\), we obtain the probability distributions by counting the number of electrons only in the output mode \(b'\), such that:

$$\begin{aligned} P_{b'}(0|\phi )= & {} P_{b'}(2|\phi )=\frac{1-\cos {2\theta }}{8}\left( c_2+c_3\right) , \nonumber \\ P_{b'}(1|\phi )= & {} c_0+\frac{c_2 \cos ^2{\phi }}{2} - \frac{c_3\sin ^2{\phi }}{2}. \end{aligned}$$
(28)

Then, from the above probabilities, the FI of \(\phi \) is given as

$$\begin{aligned} F_{\text {pure}}(\phi )=\left( c_2+c_3\right) ^2\sin ^2{2\phi }\left[ \frac{1}{\left( c_2+c_3\right) \left( 1-\cos {2\phi }\right) }+\frac{1}{4-2\left( c_2+c_3\right) \sin ^2{\phi }}\right] .\nonumber \\ \end{aligned}$$
(29)

On the other hand, for a mixed state \(\left| \alpha \right| ^2\left| \uparrow \right\rangle _a\left\langle \uparrow \right| +\left| \beta \right| ^2\left| \downarrow \right\rangle _a\left\langle \downarrow \right| \) of the single-electron, the FI is given as

$$\begin{aligned} F_{\text {mix}}(\phi )=c_2^2\sin ^2{2\phi }\left[ \frac{1}{c_2\left( 1-\cos {2\phi }\right) }+\frac{1}{4-2c_2\sin ^2{\phi }}\right] . \end{aligned}$$
(30)

As such, we can also figure out the difference of FIs in Eqs. (29) and (30) with \(c_3\) (as long as \(\phi \ne \frac{\pi }{2}\) and \(\phi \ne \pi \)). In Fig. 6, we also present the graphs of (left) \(F_{\text {pure}}(\phi )\) and (right) \(F_{\text {mix}}(\phi )\) for \(\phi =0.1\), which exhibits the same behavior as the case of boson.Footnote 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, SY., Bang, J. & Kim, J. Two-particle indistinguishability and identification of boson and fermion species: a Fisher information approach. Quantum Inf Process 18, 263 (2019). https://doi.org/10.1007/s11128-019-2379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2379-2

Keywords