Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

High efficiency postprocessing for continuous-variable quantum key distribution: using all raw keys for parameter estimation and key extraction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

High efficiency postprocessing of continuous-variable quantum key distribution (CV-QKD) system has a significant impact on the secret key rate and transmission distance of the system. For a quantum channel with unknown prior characteristics, we have to sacrifice part (typically half) of the raw keys to estimate the channel parameters, which is used to assist in error correction and estimate the secret key rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation when considering the finite-size effect. In this paper, we propose a high efficiency postprocessing method which uses all the raw keys for both parameter estimation and key extraction. The correcting party uses the extra data (used for phase compensation and synchronization etc.) to roughly estimate the quantum channel parameters, or she can use the results of the last block, then she selects a suitable code to correct the errors between them, finally she recovers the raw keys of the other side by a reverse mapping function after the success of error correction. Then, she uses all the raw keys of both sides for parameter estimation. We show that this method improves the accuracy of parameter estimation and the secret key rate of CV-QKD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  2. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J., Razavi, M., Shaari, J.S., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden P.: Advances in Quantum Cryptography. Preprint at arXiv:1906.01645 (2019)

  3. Bennett, C.H., Brassard G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE Conference on Computer System and Signal Processing, pp. 175–179 (1984)

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  6. Weedbrook, C., Lance, A.M., Bowen, W.P., Symul, T., Ralph, T.C., Lam, P.K.: Quantum cryptography without switching. Phys. Rev. Lett. 93(17), 170504 (2004)

    Article  ADS  Google Scholar 

  7. Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Continuous-variable quantum cryptography using two-way quantum communication. Nat. Photonics 4, 726 (2008)

    Google Scholar 

  8. Li, Z., Zhang, Y.C., Xu, F., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052301 (2014)

    Article  ADS  Google Scholar 

  9. Pirandola, S., Ottaviani, C., Spedalieri, G., Weedbrook, C., Braunstein, S.L., Lloyd, S., Gehring, T., Jacobsen, C.S., Andersen, U.L.: High-rate measurement-device-independent quantum cryptography. Nat. Photonics 9, 397–402 (2015)

    Article  ADS  Google Scholar 

  10. Zhang, Y.C., Li, Z., Yu, S., Gu, W., Peng, X., Guo, H.: Continuous-variable measurement-device-independent quantum key distribution using squeezed states. Phys. Rev. A 90(5), 052325 (2014)

    Article  ADS  Google Scholar 

  11. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621–669 (2012)

    Article  ADS  Google Scholar 

  12. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  13. Diamanti, E., Leverrier, A.: Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17, 6072–6092 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhang, Y.C., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., Huang, Y., Xu, C., Zhang, X., Wang, Z., Li, M., Zhang, X., Zheng, Z., Chu, B., Gao, X., Meng, N., Cai, W., Wang, Z., Wang, G., Yu, S., Guo, H.: Continuous-variable QKD over 50 km commercial fiber. Quantum Sci. Technol. 4(3), 035006 (2019)

    Article  Google Scholar 

  15. Leverrier, A., Grosshans, F., Grangier, P.: Finite-size analysis of a continuous-variable quantum key distribution. Phys. Rev. A 81(6), 062343 (2010)

    Article  ADS  Google Scholar 

  16. Jouguet, P., Kunz-Jacques, S., Diamanti, E., Leverrier, A.: Analysis of imperfections in practical continuous-variable quantum key distribution. Phys. Rev. A 86(3), 032309 (2012)

    Article  ADS  Google Scholar 

  17. Zhang, X., Zhang, Y., Zhao, Y., Wang, X., Yu, S., Guo, H.: Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution. Phys. Rev. A 96(4), 042334 (2017)

    Article  ADS  Google Scholar 

  18. Papanastasiou, P., Ottaviani, C., Pirandola, S.: Finite-size analysis of measurement-device-independent quantum cryptography with continuous variables. Phys. Rev. A 96(4), 042332 (2017)

    Article  ADS  Google Scholar 

  19. Lupo, C., Ottaviani, C., Papanastasiou, P., Pirandola, S.: Parameter estimation with almost no public communication for continuous-variable quantum key distribution. Phys. Rev. Lett. 120, 220505 (2018)

    Article  ADS  Google Scholar 

  20. Leverrier, A.: Composable security proof for continuous-variable quantum key distribution with coherent states. Phys. Rev. Lett. 114(7), 070501 (2015)

    Article  ADS  Google Scholar 

  21. Ruppert, L., Usenko, V.C., Filip, R.: Long-distance continuous-variable quantum key distribution with efficient channel estimation. Phys. Rev. A 90, 062310 (2014)

    Article  ADS  Google Scholar 

  22. Assche, G.V., Cardinal, J., Cerf, N.J.: Reconciliation of a quantum-distributed Gaussian key. IEEE Trans. Inf. Theory 50(2), 394–400 (2004)

    Article  MathSciNet  Google Scholar 

  23. Wang, X., Zhang, Y.C., Li, Z., Xu, B., Yu, S., Guo, H.: Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution. Quantum Inf. Comput. 17(13&14), 1123–1134 (2017)

    MathSciNet  Google Scholar 

  24. Leverrier, A., Alléaume, R., Boutros, J., Zémor, G., Grangier, P.: Multidimensional reconciliation for a continuous-variable quantum key distribution. Phys. Rev. A 77(4), 042325 (2008)

    Article  ADS  Google Scholar 

  25. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)

    Article  MathSciNet  Google Scholar 

  26. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  MathSciNet  Google Scholar 

  27. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  28. Richardson, T., Urbanke, R.: Modern Coding Theory. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  29. Richardson, T., Urbanke, R.: Multi-edge type LDPC codes. Presented at workshop honoring Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena, California, pp. 24–25 (2002)

  30. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  31. Leverrier, A., Grangier, P.: Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation. Phys. Rev. A 83, 042312 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of National Natural Science Foundation of China under Grant 61531003, the National Natural Science Foundation under Grant 61427813, the National Basic Research Program of China (973 Program) under Grant 2014CB340102, the China Postdoctoral Science Foundation under Grant 2018M630116, and the Fund of State Key Laboratory of Information Photonics and Optical Communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, Y., Yu, S. et al. High efficiency postprocessing for continuous-variable quantum key distribution: using all raw keys for parameter estimation and key extraction. Quantum Inf Process 18, 264 (2019). https://doi.org/10.1007/s11128-019-2381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2381-8

Keywords