Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Nonclassicality of Dirac–Pauli quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In classical physics, a joint measurement of two compatible observables on an enlarged system–apparatus state usually implies that the joint statistics of the corresponding specific system observables are always separable. In this paper, we show that, for the quantum states with its density operators composed of the Dirac–Pauli matrices, the joint statistics of these specific system observables are entangled and the data inversion of the joint statistical distribution is negative. This nonclassical property, which can be revealed by an experimental scheme based on the homodyne detection, maybe helps us to understand the nonlocal features of the quantum tests of the Bell type. When we consider these Dirac–Pauli states as \(2\times 2\) bipartite ones, these bipartite states have a nonzero quantum discord although they are separable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. According to the definition and the theorem in Refs. [32, 33], this \(2\times 2\) bipartite state in Eq. (27) can be proved a nonzero discord for \(\theta _1\ne 0, \pi /2, \ \pi ,\ 3\pi /2\).

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Park, C.-Y., Cho, J.: Correlations in local measurements and entanglement in many-body systems. Phys. Rev. A 98, 012107 (2018)

    Article  ADS  Google Scholar 

  4. Huang, Z., Maccone, L., Karim, A., Macchiavello, C., Chapman, R.J., Peruzzo, A.: High-dimensional entanglement certification. Sci. Rep. 6, 27637 (2016)

    Article  ADS  Google Scholar 

  5. Steinlechner, S., Bauchrowitz, J., Meinders, M., Müller-Ebhardt, H., Danzmann, K., Schnabel, R.: Quantum-dense metrology. Nat. Photonics 7, 626 (2013)

    Article  ADS  Google Scholar 

  6. Zhang, W., Ding, D.-S., Dong, M.-X., Shi, S., Wang, K., Liu, S.-L., Li, Y., Zhou, Z.-Y., Shi, B.-S., Guo, G.-C.: Experimental realization of entanglement in multiple degrees of freedom between two quantum memories. Nat. Commun. 7, 13514 (2016)

    Article  ADS  Google Scholar 

  7. Delicado, R.F., Cabello, D.B., Boada, I.L.: The quantum cryptograpy: communication and computation. Acta Astronaut. 57, 348 (2005)

    Article  ADS  Google Scholar 

  8. Yan, B.: Algebraic probability-theoretic characterization of quantum correlations. Phys. Rev. A 96, 052120 (2017)

    Article  ADS  Google Scholar 

  9. Yang, X., Bai, M.-Q., Zuo, Z.-C., Mo, Z.-W.: Secure simultaneous dense coding using \(\chi \)-type entangled state. Quantum Inf. Process. 17, 261 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Subramanian, K., Viswanathan, N.K.: Measuring correlations in non-separable vector beams using projective measurements. Opt. Commun. 399, 45 (2017)

    Article  ADS  Google Scholar 

  11. Bell, J.S.: On the Einstein podolsky rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  12. Nieuwenhuizen, T.M.: Is the contextuality loophole fatal for the derivation of Bell inequalities? Found Phys. 41, 580 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cao, H.-X., Guo, Z.-H.: Characterizing Bell nonlocality and EPR steering. Sci. China Phys. Mech. Astron. 62, 030311 (2018)

    Article  Google Scholar 

  14. Abellán, C., et al.: (BIG Bell test collaboration): challenging local realism with human choices. Nature 557, 212 (2018)

    Article  ADS  Google Scholar 

  15. Luis, A., Monroy, L.: Nonclassicality of coherent states: entanglement of joint statistics. Phys. Rev. A 96, 063802 (2017)

    Article  ADS  Google Scholar 

  16. Perarnau-Llobet, M., Nieuwenhuizen, T.M.: Simultaneous measurement of two noncommuting quantum variables: solution of a dynamical model. Phys. Rev. A 95, 052129 (2017)

    Article  ADS  Google Scholar 

  17. Zalys-Geller, E., Narla, A., Shankar, S., Hatridge, M., Silveri, M.P., Sliwa, K., Leghtas, Z., Devoret, M.H.: Generation of discord through a remote joint continuous variable measurement. arXiv:1803.01275v2

  18. Kim, M.S., Son, W., Bužek, V., Knight, P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2012)

    Article  ADS  Google Scholar 

  19. Wang, X.B.: Theorem for the beam-splitter entangler. Phys. Rev. A 66, 024303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wolf, M.M., Eisert, J., Plenio, M.B.: Entangling power of passive optical elements. Phys. Rev. Lett. 90, 047904 (2003)

    Article  ADS  Google Scholar 

  21. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  22. Ivan, J.S., Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Entanglement and nonclassicality for multimode radiation-field states. Phys. Rev. A 83, 032118 (2011)

    Article  ADS  Google Scholar 

  23. Bradshaw, M., Lam, P.K., Assad, S.M.: Ultimate precision of joint quadrature parameter estimation with a Gaussian probe. Phys. Rev. A 97, 012106 (2018)

    Article  ADS  Google Scholar 

  24. Bednorz, A.: Objective realism and joint measurability in quantum many copies. Ann. Phys. 530, 1800002 (2018)

    Article  MathSciNet  Google Scholar 

  25. de Muynck, W.M.: Foundations of Quantum Mechanics: An Empiricist Approach. Kluwer, Dordrecht (2002)

    Book  Google Scholar 

  26. de Muynck, W.M.: Information in neutron interference experiments. Phys. Lett. A 182, 201 (1993)

    Article  ADS  Google Scholar 

  27. de Muynck, W.M.: An alternative to the Luders generalization of the von Neumann projection, and its interpretation. J. Phys. A 31, 431 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. de Muynck, W.M., Martens, H.: Neutron interferometry and the joint measurement of incompatible observables. Phys. Rev. A 42, 5079 (1990)

    Article  ADS  Google Scholar 

  29. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  30. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A 72, 032317 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mazhar, A., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  32. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  34. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, London (1947)

    MATH  Google Scholar 

  35. Walker, N.G.: Quantum theory of multiport optical homodyning. J. Mod. Opt. 34, 15 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Project Nos. 11604243 and 11047015, and the Natural Science Foundation of Tianjin, Project No. 16JCQNJC01600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Guo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZG., Liu, ZD., Zhang, RX. et al. Nonclassicality of Dirac–Pauli quantum states. Quantum Inf Process 18, 291 (2019). https://doi.org/10.1007/s11128-019-2405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2405-4

Keywords