Abstract
Quantum secret sharing (QSS) schemes without entanglement have huge advantages in scalability and are easier to realize as they only require sequential communications of a single quantum system. However, these schemes often come with drawbacks such as exact (n, n) structure, security flaws and absences of effective cheating detections. To address these problems, we propose a verifiable framework by utilizing entanglement-free states to construct (t, n)-QSS schemes. Our work is the heuristic step toward information-theoretical security in entanglement-free QSS, and it sheds light on how to establish effective verification mechanism against cheating. As a result, the proposed framework has a significant importance in constructing QSS schemes for versatile applications in quantum networks due to its intrinsic scalability, flexibility and information-theoretical security.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Blakley, G.R. et al.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48 (1979)
Harn, L.: Group authentication. IEEE Trans. Comput. 62(9), 1893–1898 (2012)
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: International Workshop on Public Key Cryptography, pp. 31–46. Springer, Heidelberg (2003)
Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital multisignature. IEEE Proc. Comput. Digit. Tech. 141(5), 307–313 (1994)
Liu, Y.-N., Harn, L., Mao, L., Xiong, Z.: Full-healing group-key distribution in online social networks. Int. J. Secur. Netw. 11(1–2), 12–24 (2016)
Desmedt, Y.G.: Threshold cryptography. Eur. Trans. Telecommun. 5(4), 449–458 (1994)
Patel, K.: Secure multiparty computation using secret sharing. In: 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), pp. 863–866. IEEE, Piscataway (2016)
Shor P. W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, Piscataway (1994)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802 (1982)
Dieks, D.G.B.J.: Communication by epr devices. Phys. Lett. A 92(6), 271–272 (1982)
Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)
Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)
Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)
Yao, F., Yin, H.-L., Chen, T.-Y., Chen, Z.-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015)
Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correction. Phys. Rev. A 88(4), 042332 (2013)
He, G.P., Bai, Y.-K.: Quantum secret sharing based on smolin states alone. J. Phys. A: Math. Theor. 41(41), 415304 (2008)
Chen, Y.-A., Zhang, A.-N., Zhao, Z., Zhou, X.-Q., Chao-Yang, L., Peng, C.-Z., Yang, T., Pan, J.-W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95(20), 200502 (2005)
Wang, X.-L., Chen, L.-K., Li, W., Huang, H.-L., Liu, C., Chen, C., Luo, Y.-H., Su, Z.-E., Wu, D., Li, Z.-D., et al.: Experimental ten-photon entanglement. Phys. Rev. Lett. 117(21), 210502 (2016)
Unruh, W.G.: Maintaining coherence in quantum computers. Phys. Rev. A 51(2), 992 (1995)
Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)
Tavakoli, A., Herbauts, I., Żukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(3), 030302 (2015)
Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: using single states instead of entanglement. Phys. Rev. A 92(3), 030301 (2015)
Changbin, L., Miao, F., Hou, J., Meng, K.: Verifiable threshold quantum secret sharing with sequential communication. Quantum Inf. Process. 17(11), 310 (2018)
Bai, C.-M., Li, Z.-H., Li, Y.-M.: Sequential quantum secret sharing using a single qudit. Commun. Theory Phys. 69(5), 513 (2018)
He, G.P.: Comment on experimental single qubit quantum secret sharing. Phys. Rev. Lett. 98(2), 028901 (2007)
Lin, S., Guo, G.-D., Yong-Zhen, X., Sun, Y., Liu, X.-F.: Cryptanalysis of quantum secret sharing with d-level single particles. Phys. Rev. A 93(6), 062343 (2016)
McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)
Massey, J. L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279. Citeseer (1993)
Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)
Mignotte, M.: How to share a secret. In: Workshop on Cryptography, pp. 371–375. Springer, Heidelberg (1982)
Thas, K.: The geometry of generalized pauli operators of n-qudit hilbert space, and an application to mubs. Europhys. Lett. 86(6), 60005 (2009)
Kent, A.: Unconditionally secure bit commitment by transmitting measurement outcomes. Phys. Rev. Lett. 109(13), 130501 (2012)
Ioannis Kogias, Y., Xiang, Q.H., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)
Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: A simple participant attack on the Brádler–Dušek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)
Qin, H., Zhu, X., Dai, Y.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)
Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)
Deng, F.-G., Long, G.L., Zhou, H.-Y.: An efficient quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 340(1–4), 43–50 (2005)
Yu, I.-C., Lin, F.-L., Huang, C.-Y.: Quantum secret sharing with multilevel mutually (un) biased bases. Phys. Rev. A 78(1), 012344 (2008)
Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger–Horne–Zeilinger states as secure carriers. Phys. Rev. A 67(4), 044302 (2003)
Lance, A.M., Symul, T., Bowen, W.P., Tyc, T., Sanders, B.C., Lam, P.K.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)
Lau, H.-K., Weedbrook, C.: Quantum secret sharing with continuous-variable cluster states. Phys. Rev. A 88(4), 042313 (2013)
Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)
Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)
Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)
Wang, J., Li, L., Peng, H., Yang, Y.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)
Tokunaga, Y., Okamoto, T., Imoto, N.: Threshold quantum cryptography. Phys. Rev. A 71(1), 012314 (2005)
Changbin, L., Miao, F., Meng, K., Yue, Y.: Threshold quantum secret sharing based on single qubit. Quantum Inf. Process. 17(3), 64 (2018)
Hai-Qiang, M., Ke-Jin, W., Jian-Hui, Y.: Experimental single qubit quantum secret sharing in a fiber network configuration. Opt. Lett. 38(21), 4494–4497 (2013)
Godfrin, C., Ballou, R., Bonet, E., Ruben, M., Klyatskaya, S., Wernsdorfer, W., Balestro, F.: Generalized ramsey interferometry explored with a single nuclear spin qudit. npj Quantum Inf. 4(1), 53 (2018)
Giordani, T., Polino, E., Emiliani, S., Suprano, A., Innocenti, L., Majury, H., Marrucci, L., Paternostro, M., Ferraro, A., Spagnolo, N., et al.: Experimental engineering of arbitrary qudit states with discrete-time quantum walks. Phys. Rev. Lett. 122(2), 020503 (2019)
Acknowledgements
We would like to thank the anonymous reviewers for helpful suggestions. This work is supported by the National Natural Science Foundation of China under Grant Nos. 61572454, 61572453, 61520106007 and Anhui Initiative in Quantum Information Technologies under Grant No. AHY150100.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: List of abbreviations
In this section, we list the full descriptions for the most frequently used abbreviations in the main text.
See Table 2.
Appendix B: Proof of Eq. (7)
In the paper, with \(\omega ={\hbox {e}}^{2\pi i/d}\) we can first prove
Proof
We have \(\omega ^ { d } = {\hbox {e}} ^ { 2 \pi i } = \cos ( 2 \pi ) + i \sin ( 2 \pi ) = 1\). At first, we suppose \(r = 0\bmod d\); thus,
If \(r \ne 0\bmod d\), so \({\omega ^r} \ne 1\). Therefore, by using the sum of geometric series, we can get
This completes the proof. \(\square \)
Next, we can define \(\left| {{\mu _j}} \right\rangle = \mathrm{QFT}\left| j \right\rangle = \frac{1}{{\sqrt{d} }}\sum \nolimits _{k = 0}^{d - 1} {{\omega ^{jk}}} \left| k \right\rangle ,j=0,1,\ldots ,d-1 \). Moreover, consider the generalized Pauli operators \(X : = \sum _ { k = 0 } ^ { d - 1 } | k + 1 \rangle \langle k |\) and \(Z:=\sum _ { k = 0 } ^ { d - 1 } \omega ^ { k } | k \rangle \langle k |\). After performing these two operators on the state \(\left| {{\mu _j}} \right\rangle \), we have
Here, we proof the transformation of the generalized Pauli operator X.
Proof
\(\square \)
As the definition in the paper, the generalized Pauli operation \(U_{m,n}\) is
where \( m,n \in \mathrm{{GF}}(d) \). Moreover, it can be written as \({U_{m,n}}=X^mZ^n\). Because with \({X^m} = \sum \nolimits _{k = 0}^{d - 1} {\left| {k + m} \right\rangle } \left\langle k \right| ,{Z^n} = \sum \nolimits _{k = 0}^{d - 1} {{\omega ^{nk}}\left| k \right\rangle } \left\langle k \right| \), we have
So, Eq. (4) in the paper can be rewritten as
Therefore, we finally give the proof of Eq. (7):
Proof
with the overall phase term \(\xi _m={\omega ^{ - \sum \nolimits _{a = 1}^m {{p_a}} \left( {\sum \nolimits _{b = 0}^{a} {({p_b} + {q_b})} } \right) }}\). \(\square \)
Rights and permissions
About this article
Cite this article
Lu, C., Miao, F., Hou, J. et al. A verifiable framework of entanglement-free quantum secret sharing with information-theoretical security. Quantum Inf Process 19, 24 (2020). https://doi.org/10.1007/s11128-019-2509-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2509-x