Abstract
Recently, a new class of monogamy relations (actually, exponentially many) was provided by Christopher Eltschka et al. in terms of squared concurrence. Their approach is restricted to the distribution of bipartite entanglement shared between different subsystems of a global state. We have critically analysed those monogamy relations in three as well as in four-qubit pure states using squared negativity. We have been able to prove that in the case of pure three-qubit states those relations are always true in terms of squared negativity. However, if we consider the pure four-qubit states, the results are not always true. Rather, we find opposite behaviour in some particular classes of four-qubit pure states where some of the monogamy relations are violated. We have provided analytical and numerical evidences in support of our claim.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247 (2000)
Ruussendorf, R., Briegel, H.J.: A One-Way Quantum Computer. Phys. Rev. Lett. 86, 5188 (2001)
Seevinck, M.P.: Monogamy of correlations versus monogamy of entanglement. Quantum Inf. Process 9, 273–294 (2010)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)
Regula, B., Martino, S.D., Lee, S., Adesso, G.: Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113, 110501 (2014)
Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Strong monogamy conjecture in a four-qubit system. Phys. Rev. A 93, 012327 (2016)
Luo, Y., Li, Y.: Monogamy of \(\alpha \)-th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)
He, H., Vidal, G.: Disentangling theorem and monogamy for entanglement negativity. Phys. Rev. A 91, 012339 (2015)
Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)
Lancien, C., Martino, S.D., Huber, M., Piani, M., Adesso, G., Winter, A.: Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117, 060501 (2016)
Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)
Eltschka, C., Huber, F., Gühne, O., Siewert, J.: Exponentially many entanglement and correlation constraints for multipartite quantum states. Phys. Rev. A 98, 052317 (2018)
Vide, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
Rains, E.M.: Quantum weight enumerators. IEEE Trans. Inf. Theory 44, 1388 (1998)
Rains, E.M.: Polynomial invariants of quantum codes. IEEE Trans. Inf. Theory 46, 54 (2000)
Huber, F., Eltschka, C., Siewert, J., Gühne, O.: Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity. J. Phys. A 51, 175301 (2018)
Verstraete, F., Dehaene, J., Moor, B.D., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)
Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)
Gühne, O., Tóth, G., Hyllus, P., Briegel, H.J.: Bell Inequalities for Graph States. Phys. Rev. Lett. 95, 120405 (2005)
Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)
Bai, Y.K., Wang, Z.D.: Multipartite entanglement in four-qubit cluster-class states. Phys. Rev. A 77, 032313 (2008)
Dicke, R.H.: Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954)
Acknowledgements
Priyabrata Char acknowledges the support from Department of Science & Technology (Inspire), New Delhi, India, Prabir Kumar Dey acknowledges the support from UGC, New Delhi, and Amit Kundu acknowledges the support from CSIR, New Delhi, India. The authors D. Sarkar and I. Chattopadhyay acknowledge it as Quest initiatives.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1
Appendix 2
The subclass of four-qubit pure generic state \(\mathcal {D}\) is \(\mathcal {D}=\{au_1+bu_2+cu_3+du_4 \quad |\quad a,b,c,d\in \mathbb {R} \quad \text {and} \quad |a|^2+|b|^2+|c|^2+|d|^2=1 \} \)
For the states in subclass \(\mathcal {D}\) we have
The numerical simulations using \(10^5\) pure random states from class \(\mathcal {D}\) shows that \(\delta _3=\delta _4\ge 0\) (Fig. 8) and \(\delta _5=\delta _6\ge 0\) (Fig. 9).
Four-qubit cluster state is \({|\psi \rangle }=a{|0000\rangle }+b{|0011\rangle }+c{|1100\rangle }-d{|1111\rangle } \) where \( a,b,c,d\in \mathcal {C}\) and \(|a|^2+|b|^2+|c|^2+|d|^2=1\). Negativities of cluster state are \(N_{12|34}=|bc+ad| \) ,
where L is sum of product of \(\{|ab|,|ac|,|ad|,|bc|,|bd|,|cd|\}\) taken two at a time except the product |bc||ad|.
The \({|W\rangle }\) and \({|\tilde{W}\rangle }\) states are
Negativities of \({|W\rangle }\) and \(\tilde{W}\) states are \(N_{1|234}=N_{2|134}=N_{3|124}=N_{4|123}=\frac{\sqrt{3}}{4}\) and \(N_{12|34}=N_{13|24}=N_{14|23}=\frac{1}{2}\). Hence, \(\delta _i=\frac{1}{4}>0\) \( \forall i=1,2,\ldots ,6\), but \(\delta _7=0\). The negativities of \({|S(4,2)\rangle }\) among different bipartition are \(N_{1|234}=N_{2|134}=N_{3|124}=N_{4|123}=\frac{1}{2}\) and \(N_{12|34}=N_{13|24}=N_{14|23}=\frac{5}{6}\). Thus, \(\delta _i=\frac{25}{36}\) \(>0\), \(\forall i=1,2,\ldots ,6 \) and \(\delta _7=-\frac{13}{12}\) \(<0\).
Generalized W state is
\({|GW\rangle }=a{|0001\rangle }+b{|0010\rangle }+c{|0100\rangle }+d{|1000\rangle }\) where \(a,b,c,d\in \mathbb {C}\) and \(|a|^2+|b|^2+|c|^2+|d|^2=1\).
The negativities are
\(\delta _1=4|c|^2|d|^2,\) \(\delta _2=4|a|^2|b|^2,\) \(\delta _3=4|b|^2|d|^2,\) \(\delta _4=4|a|^2|c|^2,\) \(\delta _5=4|a|^2|d|^2,\delta _6=4|b|^2|c|^2\) and \(\delta _7=0\). So \(\delta _i\ge 0\) \(\forall i=1,2,\ldots ,6\).
Superposition of \({|GW\rangle }\) and \({|0000\rangle }\) is \({|\psi \rangle }=\sqrt{p}{|GW\rangle }+\sqrt{1-p}{|0000\rangle }\) where \(0<p<1\),\({|GW\rangle }=a{|0001\rangle }+b{|0010\rangle }+c{|0100\rangle }+d{|1000\rangle }\), \(a,b,c,d\in \mathbb {C}\) s.t. \(|a|^2+|b|^2+|c|^2+|d|^2=1 \). The Negativities are, \(N_{1|234}=p|d|\sqrt{|a|^2+|b|^2+|c|^2},\)
\(\delta _1=4p^2|c|^2|d|^2,\) \(\delta _2=4p^2|a|^2|b|^2,\) \(\delta _3=4p^2|b|^2|d|^2,\) \(\delta _4=4p^2|a|^2|c|^2,\) \(\delta _5=4p^2|a|^2|d|^2,\delta _6=4p^2|b|^2|c|^2 \). So \(\delta _i\ge 0\) \(\forall i=1,2,\ldots ,6\).
Superposition of \({|GGHZ\rangle }\) and \({|W\rangle }\) state is
\({|\psi \rangle }=a{|0000\rangle }+b{|1111\rangle }+\frac{c}{2}({|0001\rangle }+{|0010\rangle }+{|0100\rangle }+{|1000\rangle })\) where \(a,b,c\in \mathbb {C}\) s.t. \(|a|^2+|b|^2+|c|^2=1 \).
\(N_{1|234}=N_{2|134}=\sqrt{16|a|^2|b|^2+12|b|^2|c|^2+3|c|^4}/4=N_{3|124}=N_{4|123}, N_{12|34}=\frac{|c|^2}{2}+\sqrt{2|a|^2|b|^2+2|b|^2|c|^2-2\sqrt{|a|^2|b|^4(|a|^2+2|c|^2)}} =N_{13|24}=N_{14|23} \).
Since \(N_{1|234}=N_{2|134}=N_{3|124}=N_{4|123} \) and \(N_{12|34}=N_{13|24}=N_{14|23}\) we have \(\delta _i=N_{12|34}^2\ge 0 \forall i=1,2,\ldots ,6\).
Appendix 3
Theorem 1
For an N partite pure state \({|\psi _{A_1A_2\ldots A_N}\rangle }\) in a \(2\otimes 2\otimes \ldots \otimes 2\)(N times) system the negativity of bipartition \(A_1|A_2\ldots A_N\) is half of its concurrence, i.e. \(N_{A_1|A_2\ldots A_N}=\frac{1}{2}C_{A_1|A_2\ldots A_N}\) [10].
Proof
For simplicity we write, \(A_1=A\) and \(A_2A_3\ldots A_N=B\). By Schmidt decomposition, any bipartite state can be written as \({|\psi _{A|B}\rangle }=\sum _{i}\sqrt{\lambda _{i}}{|\phi _{A}^{i}\rangle }\otimes {|\phi _{B}^{i}\rangle }\) where \(\lambda _i\) are Schmidt coefficients and \(\{{|\phi _{A}^{i}\rangle }\},\{{|\phi _{B}^{i}\rangle }\}\) are orthogonal basis for the subsystems A and B.
Now, \(\rho _{AB}=\sum _{i,j}\sqrt{{\lambda _i}\lambda _j} {|\phi _{A}^{i}\rangle }{\left\langle \phi _{A}^{j}\right| }\otimes {|\phi _{B}^{i}\rangle }{\left\langle \phi _{B}^{j}\right| }\)
\(\implies \rho _{AB}^{t_A}=\sum _{i,j}\sqrt{\lambda _i\lambda _j}{|\phi _{A}^{j'}\rangle } {\left\langle \phi _{A}^{i'}\right| }\otimes {|\phi _{B}^{i}\rangle }{\left\langle \phi _{B}^{j}\right| }\)
So, we have
Hence, \(N_{A_1|A_2\ldots A_N}=\frac{1}{2}C_{A_1|A_2\ldots A_N}\) (proved). \(\square \)
Theorem 2
For an N partite pure state \({|\psi _{A_1A_2\ldots A_N}\rangle }\) in a \(d_1\otimes d_2\otimes \ldots \otimes d_N\) dimensional system where \(d_i>2\) \(\forall i=1,2,\ldots ,N\), \(N_{A_1|A_2\ldots A_N}\ge \frac{1}{2}C_{A_1|A_2\ldots A_N}\) .
Proof
For simplicity we write \(A_1=A\) & \(A_2\otimes A_3\otimes \ldots \otimes A_N=B\). Suppose, \(d\le min\{d_1, d_2.d_3\ldots d_N\}\), then by Schmidt decomposition for any bipartite state, we write, \({|\Psi _{A|B}\rangle }=\sum _{i=1}^{d}\sqrt{\lambda _{i}}{|\phi _{A}^{i}\rangle }\otimes {|\phi _{B}^{i}\rangle }\) where \(\lambda _i\) are Schmidt coefficients and \(\{{|\phi _{A}^{i}\rangle }\},\{{|\phi _{B}^{i}\rangle }\}\) are orthogonal basis for the subsystems A and B, respectively. By the similar calculations from theorem 1 we can say that \(\square \)
where \(Z=\sum _{i=1}^{d}\sqrt{\lambda _i}{|\phi _{A}^{i}\rangle }{\left\langle \phi _{B}^{i}\right| }, \Vert A\otimes B\Vert =\Vert A\Vert \Vert B\Vert \) and \(\sum _{i=1}^{d}\lambda _i=1\)
Hence, \(N_{A_1|A_2\ldots A_N}\ge \frac{1}{2}C_{A_1|A_2\ldots A_N}\) (proved).
Rights and permissions
About this article
Cite this article
Char, P., Dey, P.K., Kundu, A. et al. New monogamy relations for multiqubit systems. Quantum Inf Process 20, 30 (2021). https://doi.org/10.1007/s11128-020-02969-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02969-y