Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

New monogamy relations for multiqubit systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, a new class of monogamy relations (actually, exponentially many) was provided by Christopher Eltschka et al. in terms of squared concurrence. Their approach is restricted to the distribution of bipartite entanglement shared between different subsystems of a global state. We have critically analysed those monogamy relations in three as well as in four-qubit pure states using squared negativity. We have been able to prove that in the case of pure three-qubit states those relations are always true in terms of squared negativity. However, if we consider the pure four-qubit states, the results are not always true. Rather, we find opposite behaviour in some particular classes of four-qubit pure states where some of the monogamy relations are violated. We have provided analytical and numerical evidences in support of our claim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247 (2000)

    Article  ADS  Google Scholar 

  4. Ruussendorf, R., Briegel, H.J.: A One-Way Quantum Computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  5. Seevinck, M.P.: Monogamy of correlations versus monogamy of entanglement. Quantum Inf. Process 9, 273–294 (2010)

    Article  MathSciNet  Google Scholar 

  6. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  7. Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)

    Article  ADS  Google Scholar 

  8. Regula, B., Martino, S.D., Lee, S., Adesso, G.: Strong monogamy conjecture for multiqubit entanglement: the four-qubit case. Phys. Rev. Lett. 113, 110501 (2014)

    Article  ADS  Google Scholar 

  9. Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Strong monogamy conjecture in a four-qubit system. Phys. Rev. A 93, 012327 (2016)

    Article  ADS  Google Scholar 

  10. Luo, Y., Li, Y.: Monogamy of \(\alpha \)-th power entanglement measurement in qubit systems. Ann. Phys. 362, 511–520 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. He, H., Vidal, G.: Disentangling theorem and monogamy for entanglement negativity. Phys. Rev. A 91, 012339 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A 75, 062308 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. Lancien, C., Martino, S.D., Huber, M., Piani, M., Adesso, G., Winter, A.: Should entanglement measures be monogamous or faithful? Phys. Rev. Lett. 117, 060501 (2016)

    Article  ADS  Google Scholar 

  14. Gour, G., Guo, Y.: Monogamy of entanglement without inequalities. Quantum 2, 81 (2018)

    Article  Google Scholar 

  15. Eltschka, C., Huber, F., Gühne, O., Siewert, J.: Exponentially many entanglement and correlation constraints for multipartite quantum states. Phys. Rev. A 98, 052317 (2018)

    Article  ADS  Google Scholar 

  16. Vide, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  17. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  18. Rains, E.M.: Quantum weight enumerators. IEEE Trans. Inf. Theory 44, 1388 (1998)

    Article  MathSciNet  Google Scholar 

  19. Rains, E.M.: Polynomial invariants of quantum codes. IEEE Trans. Inf. Theory 46, 54 (2000)

    Article  MathSciNet  Google Scholar 

  20. Huber, F., Eltschka, C., Siewert, J., Gühne, O.: Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity. J. Phys. A 51, 175301 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Verstraete, F., Dehaene, J., Moor, B.D., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gühne, O., Tóth, G., Hyllus, P., Briegel, H.J.: Bell Inequalities for Graph States. Phys. Rev. Lett. 95, 120405 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A 65, 012308 (2001)

    Article  ADS  Google Scholar 

  25. Bai, Y.K., Wang, Z.D.: Multipartite entanglement in four-qubit cluster-class states. Phys. Rev. A 77, 032313 (2008)

    Article  ADS  Google Scholar 

  26. Dicke, R.H.: Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Priyabrata Char acknowledges the support from Department of Science & Technology (Inspire), New Delhi, India, Prabir Kumar Dey acknowledges the support from UGC, New Delhi, and Amit Kundu acknowledges the support from CSIR, New Delhi, India. The authors D. Sarkar and I. Chattopadhyay acknowledge it as Quest initiatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasis Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} C^2_{1|234}+C^2_{2|134}+C^2_{13|24}+C^2_{14|23}&\ge C^2_{3|124}+C^2_{4|123}+C^2_{12|34} \qquad for \quad T=\{1,2\} \end{aligned}$$
(23)
$$\begin{aligned} C^2_{3|124}+C^2_{4|123}+C^2_{13|24}+C^2_{14|23}&\ge C^2_{1|234}+C^2_{2|134}+C^2_{12|34} \qquad for \quad T=\{3,4\} \end{aligned}$$
(24)
$$\begin{aligned} C^2_{1|234}+C^2_{3|124}+C^2_{12|34}+C^2_{14|23}&\ge C^2_{4|123}+C^2_{2|134}+C^2_{13|24} \qquad for \quad T=\{1,3\} \end{aligned}$$
(25)
$$\begin{aligned} C^2_{4|123}+C^2_{2|134}+C^2_{12|34}+C^2_{14|23}&\ge C^2_{1|234}+C^2_{3|124}+C^2_{13|24} \qquad for \quad T=\{2,4\} \end{aligned}$$
(26)
$$\begin{aligned} C^2_{1|234}+C^2_{4|123}+C^2_{12|34}+C^2_{13|24}&\ge C^2_{2|134}+C^2_{3|124}+C^2_{14|23} \qquad for \quad T=\{1,4\} \end{aligned}$$
(27)
$$\begin{aligned} C^2_{2|134}+C^2_{3|124}+C^2_{12|34}+C^2_{13|24}&\ge C^2_{1|234}+C^2_{4|123}+C^2_{14|23} \qquad for \quad T=\{2,3\} \end{aligned}$$
(28)
$$\begin{aligned} C^2_{1|234}+C^2_{2|134}+C^2_{3|124}+C^2_{4|123}&\ge C^2_{12|34}+C^2_{13|24}+C^2_{14|23} \qquad for \quad T=\{1,2,3,4\} \end{aligned}$$
(29)
$$\begin{aligned} \delta _1&= N^2_{1|234}+N^2_{2|134}+N^2_{13|24}+N^2_{14|23}-N^2_{3|124}-N^2_{4|123}-N^2_{12|34} \qquad for \quad T=\{1,2\}\\ \delta _2&= N^2_{3|124}+N^2_{4|123}+N^2_{13|24}+N^2_{14|23}-N^2_{1|234}-N^2_{2|134}-N^2_{12|34} \qquad for \quad T=\{3,4\}\\ \delta _3&= N^2_{1|234}+N^2_{3|124}+N^2_{12|34}+N^2_{14|23}-N^2_{4|123}-N^2_{2|134}-N^2_{13|24} \qquad for \quad T=\{1,3\}\\ \delta _4&= N^2_{4|123}+N^2_{2|134}+N^2_{12|34}+N^2_{14|23}-N^2_{1|234}-N^2_{3|124}-N^2_{13|24} \qquad for \quad T=\{2,4\}\\ \delta _5&= N^2_{1|234}+N^2_{4|123}+N^2_{12|34}+N^2_{13|24}-N^2_{2|134}-N^2_{3|124}-N^2_{14|23} \qquad for \quad T=\{1,4\}\\ \delta _6&= N^2_{2|134}+N^2_{3|124}+N^2_{12|34}+N^2_{13|24}-N^2_{1|234}-N^2_{4|123}-N^2_{14|23} \qquad for \quad T=\{2,3\}\\ \delta _7&= N^2_{1|234}+N^2_{2|134}+N^2_{3|124}+N^2_{4|123}-N^2_{12|34}-N^2_{13|24}-N^2_{14|23} \qquad for \quad T=\{1,2,3,4\}\\ \delta _8&=\delta _9=\ldots =\delta _{15}=0~when~ |T|~ is~odd~number. \end{aligned}$$
$$\begin{aligned} N^2_{1|234}+N^2_{2|134}+N^2_{13|24}+N^2_{14|23}&\ge N^2_{3|124}+N^2_{4|123}+N^2_{12|34} \qquad for \quad T=\{1,2\}\end{aligned}$$
(30)
$$\begin{aligned} N^2_{3|124}+N^2_{4|123}+N^2_{13|24}+N^2_{14|23}&\ge N^2_{1|234}+N^2_{2|134}+N^2_{12|34} \qquad for \quad T=\{3,4\}\end{aligned}$$
(31)
$$\begin{aligned} N^2_{1|234}+N^2_{3|124}+N^2_{12|34}+N^2_{14|23}&\ge N^2_{4|123}+N^2_{2|134}+N^2_{13|24} \qquad for \quad T=\{1,3\}\end{aligned}$$
(32)
$$\begin{aligned} N^2_{4|123}+N^2_{2|134}+N^2_{12|34}+N^2_{14|23}&\ge N^2_{1|234}+N^2_{3|124}+N^2_{13|24} \qquad for \quad T=\{2,4\}\end{aligned}$$
(33)
$$\begin{aligned} N^2_{1|234}+N^2_{4|123}+N^2_{12|34}+N^2_{13|24}&\ge N^2_{2|134}+N^2_{3|124}+N^2_{14|23} \qquad for \quad T=\{1,4\}\end{aligned}$$
(34)
$$\begin{aligned} N^2_{2|134}+N^2_{3|124}+N^2_{12|34}+N^2_{13|24}&\ge N^2_{1|234}+N^2_{4|123}+N^2_{14|23} \qquad for \quad T=\{2,3\}\end{aligned}$$
(35)
$$\begin{aligned} N^2_{1|234}+N^2_{2|134}+N^2_{3|124}+N^2_{4|123}&\ge N^2_{12|34}+N^2_{13|24}+N^2_{14|23} \qquad for \quad T=\{1,2,3,4\} \end{aligned}$$
(36)

Appendix 2

The subclass of four-qubit pure generic state \(\mathcal {D}\) is \(\mathcal {D}=\{au_1+bu_2+cu_3+du_4 \quad |\quad a,b,c,d\in \mathbb {R} \quad \text {and} \quad |a|^2+|b|^2+|c|^2+|d|^2=1 \} \)

For the states in subclass \(\mathcal {D}\) we have

$$\begin{aligned} N_{1|234}= & {} N_{2|134}=N_{3|124}=N_{4|123}=\frac{1}{2} ,\\ N_{13|24}= & {} \{|(a+b)^2-(c+d)^2|+|(a-b)^2-(c-d)^2|+|(a+c)^2-(b+d)^2|\\&+|(a-c)^2+(b-d)^2|+|(a+d)^2-(b+c)^2|+|(a-d)^2-(b-c)^2|\}/4 ,\\ N_{14|23}= & {} \{|(a+b)^2-(c-d)^2|+|(a-b)^2-(c+d)^2|+|(a+c)^2\\&-(b-d)^2|+|(a-c)^2+(b+d)^2|+|(a+d)^2\\&-(b-c)^2|+|(a-d)^2-(b+c)^2|\}/4 , \\ N_{12|34}= & {} |ab|+|ac|+|ad|+|bc|+|bd|+|cd| .\\ \delta _1= & {} \delta _2=N_{13|24}^2+N_{14|23}^2-N_{12|34}^2 , \\ \delta _3= & {} \delta _4=N_{12|34}^2+N_{14|23}^2-N_{13|24}^2 , \\ \delta _5= & {} \delta _6=N_{12|34}^2+N_{13|24}^2-N_{14|23}^2 ,\\ \delta _7= & {} 1-N_{12|34}^2-N_{13|24}^2-N_{14|23}^2 . \end{aligned}$$

The numerical simulations using \(10^5\) pure random states from class \(\mathcal {D}\) shows that \(\delta _3=\delta _4\ge 0\) (Fig. 8) and \(\delta _5=\delta _6\ge 0\) (Fig. 9).

Fig. 8
figure 8

\(\delta _3\) for state in subclass \(\mathcal {D}\)

Fig. 9
figure 9

\(\delta _5\) for state in subclass \(\mathcal {D}\)

Four-qubit cluster state is \({|\psi \rangle }=a{|0000\rangle }+b{|0011\rangle }+c{|1100\rangle }-d{|1111\rangle } \) where \( a,b,c,d\in \mathcal {C}\) and \(|a|^2+|b|^2+|c|^2+|d|^2=1\). Negativities of cluster state are \(N_{12|34}=|bc+ad| \) ,

$$\begin{aligned} N_{13|24}= & {} N_{14|23}=|ab|+|ac|+|ad|+|bc|+|bd|+|cd| ,\\ N_{1|234}= & {} N_{2|134}=\sqrt{(|a|^2+|b|^2)(|c|^2+|d|^2)} ,\\ N_{3|124}= & {} N_{4|123}=\sqrt{(|a|^2+|c|^2)(|b|^2+|d|^2)} .\\ \delta _3= & {} \delta _4=N_{12|34}^2+N_{14|23}^2-N_{13|24}^2=|bc+ad|^2\ge 0 ,\\ \delta _5= & {} \delta _6=N_{12|34}^2+N_{13|23}^2-N_{14|24}^2=|bc+ad|^2\ge 0 ,\\ \delta _1= & {} 4(|ac|^2+|bd|^2)+(|bc|^2+|ad|^2)+2(|bcad|-Re(bca^*d^*))+2L\ge 0 , \\ \delta _2= & {} 4(|ab|^2+|cd|^2)+(|bc|^2+|ad|^2)+2(|bcad|-Re(bca^*d^*))+2L\ge 0\\&\quad [ \because |bc||ad|\ge Re(bca^*d^*) ] , \end{aligned}$$

where L is sum of product of \(\{|ab|,|ac|,|ad|,|bc|,|bd|,|cd|\}\) taken two at a time except the product |bc||ad|.

The \({|W\rangle }\) and \({|\tilde{W}\rangle }\) states are

$$\begin{aligned} {|W\rangle }= & {} \frac{1}{2}({|0001\rangle }+{|0010\rangle }+{|0100\rangle }+{|1000\rangle })\\ {|\tilde{W}\rangle }= & {} \frac{1}{2}({|1110\rangle }+{|1101\rangle }+{|1011\rangle }+{|0111\rangle }) \end{aligned}$$

Negativities of \({|W\rangle }\) and \(\tilde{W}\) states are \(N_{1|234}=N_{2|134}=N_{3|124}=N_{4|123}=\frac{\sqrt{3}}{4}\) and \(N_{12|34}=N_{13|24}=N_{14|23}=\frac{1}{2}\). Hence, \(\delta _i=\frac{1}{4}>0\) \( \forall i=1,2,\ldots ,6\), but \(\delta _7=0\). The negativities of \({|S(4,2)\rangle }\) among different bipartition are \(N_{1|234}=N_{2|134}=N_{3|124}=N_{4|123}=\frac{1}{2}\) and \(N_{12|34}=N_{13|24}=N_{14|23}=\frac{5}{6}\). Thus, \(\delta _i=\frac{25}{36}\) \(>0\), \(\forall i=1,2,\ldots ,6 \) and \(\delta _7=-\frac{13}{12}\) \(<0\).

Generalized W state is

\({|GW\rangle }=a{|0001\rangle }+b{|0010\rangle }+c{|0100\rangle }+d{|1000\rangle }\) where \(a,b,c,d\in \mathbb {C}\) and \(|a|^2+|b|^2+|c|^2+|d|^2=1\).

The negativities are

$$\begin{aligned} N_{1|234}= & {} |d|\sqrt{|a|^2+|b|^2+|c|^2} , \\ N_{2|134}= & {} |c|\sqrt{|a|^2+|b|^2+|d|^2} , \\ N_{3|124}= & {} |b|\sqrt{|a|^2+|d|^2+|c|^2} , \\ N_{4|123}= & {} |a|\sqrt{|b|^2+|c|^2+|d|^2} , \\ N_{12|34}= & {} \sqrt{(|a|^2+|b|^2)(|c|^2+|d|^2)} , \\ N_{13|24}= & {} \sqrt{(|a|^2+|c|^2)(|b|^2+|d|^2)} , \\ N_{14|23}= & {} \sqrt{(|b|^2+|c|^2)(|a|^2+|d|^2)} . \\ \end{aligned}$$

\(\delta _1=4|c|^2|d|^2,\) \(\delta _2=4|a|^2|b|^2,\) \(\delta _3=4|b|^2|d|^2,\) \(\delta _4=4|a|^2|c|^2,\) \(\delta _5=4|a|^2|d|^2,\delta _6=4|b|^2|c|^2\) and \(\delta _7=0\). So \(\delta _i\ge 0\) \(\forall i=1,2,\ldots ,6\).

Superposition of \({|GW\rangle }\) and \({|0000\rangle }\) is \({|\psi \rangle }=\sqrt{p}{|GW\rangle }+\sqrt{1-p}{|0000\rangle }\) where \(0<p<1\),\({|GW\rangle }=a{|0001\rangle }+b{|0010\rangle }+c{|0100\rangle }+d{|1000\rangle }\), \(a,b,c,d\in \mathbb {C}\) s.t. \(|a|^2+|b|^2+|c|^2+|d|^2=1 \). The Negativities are, \(N_{1|234}=p|d|\sqrt{|a|^2+|b|^2+|c|^2},\)

$$\begin{aligned} N_{2|134}= & {} p|c|\sqrt{|a|^2+|b|^2+|d|^2} , \\ N_{3|124}= & {} p|b|\sqrt{|a|^2+|d|^2+|c|^2} , \\ N_{4|123}= & {} p|a|\sqrt{|b|^2+|c|^2+|d|^2} , \\ N_{12|34}= & {} p\sqrt{(|a|^2+|b|^2)(|c|^2+|d|^2)} , \\ N_{13|24}= & {} p\sqrt{(|a|^2+|c|^2)(|b|^2+|d|^2)} , \\ N_{14|23}= & {} p\sqrt{(|b|^2+|c|^2)(|a|^2+|d|^2)} . \\ \end{aligned}$$

\(\delta _1=4p^2|c|^2|d|^2,\) \(\delta _2=4p^2|a|^2|b|^2,\) \(\delta _3=4p^2|b|^2|d|^2,\) \(\delta _4=4p^2|a|^2|c|^2,\) \(\delta _5=4p^2|a|^2|d|^2,\delta _6=4p^2|b|^2|c|^2 \). So \(\delta _i\ge 0\) \(\forall i=1,2,\ldots ,6\).

Superposition of \({|GGHZ\rangle }\) and \({|W\rangle }\) state is

\({|\psi \rangle }=a{|0000\rangle }+b{|1111\rangle }+\frac{c}{2}({|0001\rangle }+{|0010\rangle }+{|0100\rangle }+{|1000\rangle })\) where \(a,b,c\in \mathbb {C}\) s.t. \(|a|^2+|b|^2+|c|^2=1 \).

\(N_{1|234}=N_{2|134}=\sqrt{16|a|^2|b|^2+12|b|^2|c|^2+3|c|^4}/4=N_{3|124}=N_{4|123}, N_{12|34}=\frac{|c|^2}{2}+\sqrt{2|a|^2|b|^2+2|b|^2|c|^2-2\sqrt{|a|^2|b|^4(|a|^2+2|c|^2)}} =N_{13|24}=N_{14|23} \).

Since \(N_{1|234}=N_{2|134}=N_{3|124}=N_{4|123} \) and \(N_{12|34}=N_{13|24}=N_{14|23}\) we have \(\delta _i=N_{12|34}^2\ge 0 \forall i=1,2,\ldots ,6\).

Appendix 3

Theorem 1

For an N partite pure state \({|\psi _{A_1A_2\ldots A_N}\rangle }\) in a \(2\otimes 2\otimes \ldots \otimes 2\)(N times) system the negativity of bipartition \(A_1|A_2\ldots A_N\) is half of its concurrence, i.e. \(N_{A_1|A_2\ldots A_N}=\frac{1}{2}C_{A_1|A_2\ldots A_N}\) [10].

Proof

For simplicity we write, \(A_1=A\) and \(A_2A_3\ldots A_N=B\). By Schmidt decomposition, any bipartite state can be written as \({|\psi _{A|B}\rangle }=\sum _{i}\sqrt{\lambda _{i}}{|\phi _{A}^{i}\rangle }\otimes {|\phi _{B}^{i}\rangle }\) where \(\lambda _i\) are Schmidt coefficients and \(\{{|\phi _{A}^{i}\rangle }\},\{{|\phi _{B}^{i}\rangle }\}\) are orthogonal basis for the subsystems A and B.

Now, \(\rho _{AB}=\sum _{i,j}\sqrt{{\lambda _i}\lambda _j} {|\phi _{A}^{i}\rangle }{\left\langle \phi _{A}^{j}\right| }\otimes {|\phi _{B}^{i}\rangle }{\left\langle \phi _{B}^{j}\right| }\)

\(\implies \rho _{AB}^{t_A}=\sum _{i,j}\sqrt{\lambda _i\lambda _j}{|\phi _{A}^{j'}\rangle } {\left\langle \phi _{A}^{i'}\right| }\otimes {|\phi _{B}^{i}\rangle }{\left\langle \phi _{B}^{j}\right| }\)

So, we have

$$\begin{aligned} N_{AB}= & {} \frac{\Vert \rho _{AB}^{t_A}\Vert _1-1}{2} \\= & {} \frac{1}{2}\{\Vert \sum _{i,j}\sqrt{\lambda _i\lambda _j}{|\phi _{A}^{j'}\rangle }{\left\langle \phi _{A}^{i'}\right| }\otimes {|\phi _{B}^{i}\rangle }{\left\langle \phi _{B}^{j}\right| }\Vert _1-1\}\\= & {} \frac{1}{2}\{\Vert \sum _{i,j}\sqrt{\lambda _i\lambda _j}{|\phi _{A}^{j'}\rangle }{\left\langle \phi _{B}^{j}\right| }\otimes {|\phi _{B}^{i}\rangle }{\left\langle \phi _{A}^{i'}\right| }\Vert _1-1\}\\= & {} \frac{1}{2}\{\Vert \sum _j\sqrt{\lambda _j}{|\phi _{A}^{j'}\rangle }{\left\langle \phi _{B}^{j}\right| }\otimes \sum _i\sqrt{\lambda _i}{|\phi _{B}^{i}\rangle }{\left\langle \phi _{A}^{i'}\right| }\Vert _1-1\}\\= & {} \frac{1}{2}\{\Vert Z\otimes Z^{\dagger }\Vert _1-1\} \quad [ Z=\sum _{j=1}^{2}\sqrt{\lambda _j}{|\phi _{A}^{j'}\rangle }{\left\langle \phi _{B}^{j}\right| } ] \\= & {} \frac{1}{2}\{\Vert Z\Vert ^2_1-1\}\quad [ \Vert A\otimes B\Vert =\Vert A\Vert \Vert B\Vert ]\\= & {} \frac{1}{2}\{(\sqrt{\lambda _1}+\sqrt{\lambda _2})^2-1\}\\= & {} \frac{1}{2}\times 2\sqrt{\lambda _1\lambda _2}\quad [ \sum _{i=1}^{2}\lambda _i=1 ]\\= & {} \frac{1}{2}\times 2\sqrt{det(\rho _A)}\\= & {} \frac{1}{2}C_{AB} \end{aligned}$$

Hence, \(N_{A_1|A_2\ldots A_N}=\frac{1}{2}C_{A_1|A_2\ldots A_N}\) (proved). \(\square \)

Theorem 2

For an N partite pure state \({|\psi _{A_1A_2\ldots A_N}\rangle }\) in a \(d_1\otimes d_2\otimes \ldots \otimes d_N\) dimensional system where \(d_i>2\) \(\forall i=1,2,\ldots ,N\), \(N_{A_1|A_2\ldots A_N}\ge \frac{1}{2}C_{A_1|A_2\ldots A_N}\) .

Proof

For simplicity we write \(A_1=A\) & \(A_2\otimes A_3\otimes \ldots \otimes A_N=B\). Suppose, \(d\le min\{d_1, d_2.d_3\ldots d_N\}\), then by Schmidt decomposition for any bipartite state, we write, \({|\Psi _{A|B}\rangle }=\sum _{i=1}^{d}\sqrt{\lambda _{i}}{|\phi _{A}^{i}\rangle }\otimes {|\phi _{B}^{i}\rangle }\) where \(\lambda _i\) are Schmidt coefficients and \(\{{|\phi _{A}^{i}\rangle }\},\{{|\phi _{B}^{i}\rangle }\}\) are orthogonal basis for the subsystems A and B, respectively. By the similar calculations from theorem 1 we can say that \(\square \)

$$\begin{aligned} N_{AB}= & {} \frac{1}{2}\{\Vert Z\Vert ^2_1-1\} = \frac{1}{2}\{[\sum _{i=1}^{d}\sqrt{\lambda _i} ]^2-1\}\\= & {} \frac{1}{2}(2\sum _{i\ne j=1}^{d}\sqrt{\lambda _i\lambda _j}) \ge \frac{1}{2}\times 2\times \left( {\begin{array}{c}d\\ 2\end{array}}\right) \sqrt{\prod _{i=1}^{d}\lambda _i}\ge \frac{1}{2}\times 2\sqrt{\prod _{i=1}^{d}\lambda _i}\\&\implies N_{AB} \ge \frac{1}{2}\times 2\sqrt{\lambda _1\lambda _2\ldots \lambda _{d}}\\&\implies N_{AB} \ge \frac{1}{2}\times 2\sqrt{det(\rho _A)} \\&\implies N_{AB} \ge \frac{1}{2}C_{AB} \end{aligned}$$

where \(Z=\sum _{i=1}^{d}\sqrt{\lambda _i}{|\phi _{A}^{i}\rangle }{\left\langle \phi _{B}^{i}\right| }, \Vert A\otimes B\Vert =\Vert A\Vert \Vert B\Vert \) and \(\sum _{i=1}^{d}\lambda _i=1\)

Hence, \(N_{A_1|A_2\ldots A_N}\ge \frac{1}{2}C_{A_1|A_2\ldots A_N}\) (proved).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Char, P., Dey, P.K., Kundu, A. et al. New monogamy relations for multiqubit systems. Quantum Inf Process 20, 30 (2021). https://doi.org/10.1007/s11128-020-02969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02969-y

Keywords