Abstract
The non-locality and thus the presence of entanglement of a quantum system can be detected using Mermin polynomials. This gives us a means to study non-locality evolution during the execution of quantum algorithms. We first consider Grover’s quantum search algorithm, noticing that states during the execution of the algorithm reach a maximum for an entanglement measure when close to a predetermined state, which allows us to search for a single optimal Mermin operator and use it to evaluate non-locality through the whole execution of Grover’s algorithm. Then the Quantum Fourier Transform is also studied with Mermin polynomials. A different optimal Mermin operator is searched for at each execution step, since in this case nothing hints us at finding a predetermined state maximally violating the Mermin inequality. The results for the Quantum Fourier Transform are compared to results from a previous study of entanglement with Cayley hyperdeterminant. All our computations can be repeated thanks to a structured and documented open-source code that we provide.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The source code is available at https://quantcert.github.io/Mermin-eval.
References
Alsina, D., Cervera, A., Goyeneche, D., Latorre, J.I., Życzkowski, K.: Operational approach to Bell inequalities: application to qutrits. Phys. Rev. A 94(3), 032102 (2016)
Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a 5-qubit quantum computer. Phys. Rev. A 94(1), 012314 (2016)
Brunner, N., Gisin, N., Scarani, V.: Entanglement and non-locality are different resources. New J. Phys. 7, 88 (2005)
Biham, O., Nielsen, M.A., Osborne, T.J.: Entanglement monotone derived from Grover’s algorithm. Phys. Rev. A 65(6), 062312 (2002)
Batle, J., Ooi, C.H.R., Farouk, A., Alkhambashi, M.S., Abdalla, S.: Global versus local quantum correlations in the Grover search algorithm. Quantum Inf. Process. 15(2), 833–849 (2016)
Braunstein, S.L., Pati, A.K.: Speed-up and entanglement in quantum searching. Quantum Inf. Comput. 2(5), 399–409 (2002)
Chakraborty, S., Banerjee, S., Adhikari, S., Kumar, A.: Entanglement in the Grover’s search algorithm. arXiv:1305.4454 [quant-ph] (2013)
Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body non-separability. Phys. Rev. Lett. 88(17), 170405 (2002)
Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)
Ekert, A., Jozsa, R.: Quantum algorithms: entanglement-enhanced information processing. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356, 1769–1782 (1998)
Grover, L.K.: A Fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96. New York, NY, USA. ACM, pp. 212–219 (1996)
Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1), 1–75 (2009)
Gour, G., Wallach, N.R.: On symmetric SL-invariant polynomials in four qubits. In: Howe, R., Hunziker, M., Willenbring, J.F. (eds.) Symmetry: Representation Theory and Its Applications. Honor of Nolan R. Wallach, Progress in Mathematics, pp. 259–267. Springer, New York, NY (2014)
Holweck, F., Jaffali, H., Nounouh, I.: Grover’s algorithm and the secant varieties. Quantum Inf. Process. 15(11), 4391–4413 (2016)
Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)
Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273(4), 213–217 (2000)
Jaffali, H., Holweck, F.: Quantum Entanglement involved in Grover’s and Shor’s algorithms: the four-qubit case. Quantum Inf. Process. 18(5), 133 (2019)
Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2036), 2011–2032 (2003)
Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Inf. Comput. 6(7), 630–640 (2006)
Lavor, C., Manssur, L.R.U., Portugal, R.: Grover’s Algorithm: Quantum Database Search. arXiv:quant-ph/0301079 (2003)
Luque, J.-G., Thibon, J.-Y.: The polynomial invariants of four qubits. Phys. Rev. A 67(4), 042303 (2003)
Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838–1840 (1990)
Meyer, D.A., Wallach, N.R.: Global entanglement in multiparticle systems. J. Math. Phys. 43(9), 4273–4278 (2002)
Miyake, A., Wadati, M.: Multipartite entanglement and hyperdeterminants. Quantum Inf. Comput. 2(7), 540–555 (2002)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary edn. Cambridge University Press, Cambridge (2010)
Osterloh, A., Siewert, J.: Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quantum Inf. 04(03), 531–540 (2006)
Rossi, M., Bruß, D., Macchiavello, C.: Scale invariance of entanglement dynamics in Grover’s quantum search algorithm. Phys. Rev. A Atom. Mol. Opt. Phys. 87(2), 1–5 (2013)
Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755(1), 675–679 (1995)
Shor, P.W., Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Santa Fe, NM, USA, : IEEE Comput. Press, Soc, pp. 124–134 (1994)
Shimoni, Y., Shapira, D., Biham, O.: Entangled quantum states generated by Shor’s factoring algorithm. Phys. Rev. A 72(6), 062308 (2005)
Toth, G., Guehne, O.: Entanglement detection in the stabilizer formalism. Phys. Rev. A 72(2), 022340 (2005)
Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65(5), 052112 (2002)
Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68(4), 042307 (2003)
Ying, M.: Floyd–Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6), 1–49 (2011)
Acknowledgements
This project is supported by the French Investissements d’Avenir program, project ISITE-BFC (contract ANR-15-IDEX-03), and by the EIPHI Graduate School (contract ANR-17-EURE-0002). The computations have been performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté.
We thank the reviewers of the previous versions of this paper for their valuable comments and remarks, that have helped improving its content.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A Explicit states for Grover’s algorithm
Proposition 2
[14, Observation 1] The state \(|\varphi _k\rangle \) after k iterations of Grover’s algorithm can be written as follows:
with \(\tilde{\alpha }_k=\dfrac{\cos (\frac{2k+1}{2} \theta )}{\sqrt{|S|}} - \dfrac{\sin (\frac{2k + 1}{2}\theta )}{\sqrt{N - |S|}}\) and \(\tilde{\beta }_k = 2^{n/2} \dfrac{\sin (\frac{2k + 1}{2}\theta )}{\sqrt{N-|S|}}\).
Proof
With \(|\varphi _0\rangle = |+\rangle ^{\otimes n}\), we can write:
where \(\mathcal {L}\) is the loop (oracle and diffusion operator) in Grover’s algorithm.
The oracle is a reflection about \((\sum _{\mathbf{x}\in S}|\mathbf{x}\rangle )^\bot = \sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \) and the diffusion operator is a reflection about \(|+\rangle ^{\otimes n}\). The composition of these two symmetries is a rotation whose angle \(\theta \) is the double of the angle between \(\sum _{\mathbf{x}\notin S} |\mathbf{x}\rangle \) and \(|+\rangle ^{\otimes n}\). So,
The fact that \(\mathcal {L}\) is a rotation of angle \(\theta \) gives \(a_k=\sin \left( \theta _k\right) \) and \(b_k = \cos \left( \theta _k \right) \) with \(\theta _k = k \theta + \theta /2\). Equation (1) then comes from \(\alpha _k = \frac{1}{\sqrt{|S|}}\sin (\frac{2k + 1}{2} \theta )\) and \(\beta _k = \frac{1}{\sqrt{N-|S|}}\cos (\frac{2k + 1}{2}\theta )\).
With this, we can now take \(\tilde{\alpha }_k = \alpha _k - \beta _k\) and \(\tilde{\beta }_k = 2^{n/2} \beta _k\) which gives us
since \(|+\rangle ^{\otimes n} = \left( \frac{1}{\sqrt{2}}\right) ^n \sum _{\mathbf{x}=0}^{N-1} |\mathbf{x}\rangle \). \(\square \)
Proposition 3
In Proposition 2, \(\tilde{\alpha }_k\) increases for k between 0 and \(\frac{\pi }{4}\sqrt{\frac{N}{|S|}}-\frac{1}{2}\) and \(\tilde{\beta }_k\) decreases on the same interval.
Proof
The optimal number of iterations of the loop \(\mathcal {L}\) in Grover’s algorithm is the smallest value \(k_{opt}\) of k such that \(a_k = 1\), i.e., \(\theta _{k_{opt}} = \pi /2\). With \(|S|\ll N\), \(\sin \left( \theta /2\right) =\sqrt{|S|/N}\) gives \(\theta \approx 2\sqrt{|S|/N}\) and \(\theta _k \approx (2k+1)\sqrt{|S|/N}\). Finally \((2k_{opt}+1)\sqrt{|S|/N}\) optimally approximates \(\pi /2\) if \(k_{opt} = \left\lfloor \frac{\pi }{4}\sqrt{\frac{N}{|S|}}-\frac{1}{2} \right\rceil = \left\lfloor \frac{\pi }{4}\sqrt{\frac{N}{|S|}} \right\rfloor \).
Moreover, \(a_k=\sin \left( \theta _k\right) \) and \(\alpha _k = \frac{1}{\sqrt{|S|}} a_k\) are increasing and \(b_k = \cos \left( \theta _k \right) \) and \(\beta _k = \frac{1}{\sqrt{N-|S|}} b_k\) are decreasing for k from 0 to \(\left( \frac{\pi }{4}\sqrt{\frac{N}{|S|}}-\frac{1}{2}\right) \). From the expressions \(\tilde{\alpha }_k = \alpha _k - \beta _k\) and \( \tilde{\beta }_k = 2^{n/2} \beta _k\), we get the result of the proposition.\(\square \)
Appendix B Cayley hyperdeterminant \(\varDelta _{2222}\)
Let \(|\varphi \rangle =\sum _{i,j,k,l\in \{0,1\}} a_{i,j,k,l}|ijkl\rangle \) be a four-qubit state. The algebra of polynomial invariants for the four-qubit Hilbert space can be generated by the four polynomials H, L, M and D defined as follows [21]:
is an invariant of degree 2.
are two invariants of degree 4.
Consider the partial derivative
of the quadrilinear form \(A =\sum _{i,j,k,l\in \{0,1\}} a_{i,j,k,l} x_i y_j z_k t_l\) with respect to the variables y and z. This quadratic form with variables x and t can be interpreted as a bilinear form on the three-dimensional space \(\text {Sym}^2(\mathbb {C}^2)\), i.e., there is a \(3\times 3\) matrix \(B_{xt}\) satisfying
Then \(D =\det (B_{xt})\) is an invariant of degree 6.
Let’s introduce the invariant polynomials
Then the Cayley hyperdeterminant is [21]:
Rights and permissions
About this article
Cite this article
de Boutray, H., Jaffali, H., Holweck, F. et al. Mermin polynomials for non-locality and entanglement detection in Grover’s algorithm and Quantum Fourier Transform. Quantum Inf Process 20, 91 (2021). https://doi.org/10.1007/s11128-020-02976-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02976-z