Abstract
The classic forgery attacks on COPA, AES-COPA and Marble authenticated encryption algorithms need to query about \({2^{n/2}}\) times, and their success probability is not high. To solve this problem, the corresponding quantum forgery attacks on COPA, AES-COPA and Marble authenticated encryption algorithms are presented. In the quantum forgery attacks on COPA and AES-COPA, we use Simon’s algorithm to find the period of the tag generation function in COPA and AES-COPA by querying in superposition, and then generate a forged tag for a new message. In the quantum forgery attack on Marble, Simon’s algorithm is used to recover the secret parameter L, and the forged tag can be computed with L. Compared with classic forgery attacks on COPA, AES-COPA and Marble, our attack can reduce the number of queries from \(O({2^{n/2}})\) to O(n) and improve success probability close to 100%.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lu, J.: On the security of the LAC authenticated encryption algorithm. In: Proceedings of Australasian Conference on Information Security and Privacy, ACISP 2016, pp. 395–408 (2016)
CAESAR-Competition for Authenticated Encryption: Security, applicability, and robustness. http://competitions.cr.yp.to/caesar.html
Boer, G.J., McFarlane, N.A.: The AES atmospheric general circulation model. GARP Publ. Ser. 22, 409–460 (1979)
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and authenticated online ciphers. Proc. Adv. Cryptol. ASIACRYPT 2013, 424–443 (2013)
National Institute of Standards and Technology (NIST): Advanced Encryption Standard (AES), FIPS-197 (2001)
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: AES-COPA v1. Submission to the CAESAR competition (2014). http://competitions.cr.yp.to/round1/aescopav1.pdf
Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: AES-COPA v2. Submission to the CAESAR competition (2015). http://competitions.cr.yp.to/round1/aescopav2.pdf
Guo, J.: Marble Specification Version 1.0. Submission to the CAESAR competition, 15 March (2014). http://competitions.cr.yp.to/round1/marblev10.pdf
Guo, J.: Marble Specification Version 1.1. Submission to the CAESAR Competition, 26 March (2014). http://competitions.cr.yp.to/round1/marblev11.pdf
Guo, J.: Marble Specification Version 1.2. Submission to the CAESAR Competition, 16 January (2015). https://groups.google.com/forum/#!topic/crypto-competitions/FoJITsVbBdM
Nandi, M.: Revisiting security claims of XLS and COPA. In: IACR Cryptology ePrint Archive, vol. 444 (2015)
Lu, J.: Almost universal forgery attacks on the COPA and marble authenticated encryption algorithms. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, pp. 789–799 (2017)
Dunkelman, O., Keller, N., Shamir, A.: Almost universal forgery attacks on AES-based MAC’s. Des. Codes Crypt. 76(3), 431–449 (2015)
Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates. Proc. Adv. Cryptol. ASIACRYPT 2015, 510–532 (2015)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1997)
Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: Proceedings of the 2010 IEEE International Symposium on Information Theory, pp. 13–18 (2010)
Kuwakado, H., Morii, M.: Security on the quantum-type even-mansour cipher. In: Proceedings of the 2012 International Symposium on Information Theory and its Applications, pp. 28–31 (2012)
Liu, W.-J., Gao, P.-P., Yu, W.-B., Qu, Z.-G., Yang, C.-N.: Quantum relief algorithm. Quantum Inf. Process. 17(10), 280 (2018)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)
Liu, W., Chen, J., Wang, Y., Gao, P., Lei, Z.: Quantum-based feature selection for multiclassification problem in complex systems with edge computing. Complexity 2020, 8216874 (2020)
Gao, Y.-L., Chen, X.-B., Xu, G., Yuan, K.-G., Liu, W., Yang, Y.-X.: A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Inf. Process. 19, 420 (2020)
Banerjee, S., Mukherjee, A., Panigrahi, P.K.: Quantum blockchain using weighted hypergraph states. Phys. Rev. Res. 2(1), 013322 (2020)
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Proceedings of the Advances in Cryptology-CRYPTO 2016, pp. 207–237 (2016)
Shi, T., Jin, C., Guan, J.: Collision attacks against AEZ-PRF for authenticated encryption AEZ. China Commun. 15(2), 46–53 (2018)
Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79(23), 4709–4712 (1997)
Leander, G. May, A.: Grover meets Simon—quantumly attacking the FX-construction. In: Proceedings of Advances in Cryptology-ASIACRYPT 2017, pp. 161–178 (2017)
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
Xie, H., Yang, L.: Using Bernstein-Vazirani algorithm to attack block ciphers. Des. Codes Crypt. 87(5), 1161–1182 (2019)
Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm and implications on symmetric cryptography. Proc. Adv. Cryptol. ASIACRYPT 2017, 211–240 (2017)
Hosoyamada, A., Sasaki, Y., Xagawa, K.: Quantum multicollision-finding algorithm. Proc. Adv. Cryptol. ASIACRYPT 2017, 179–210 (2017)
Hosoyamada, A., Sasaki, Y., Tani, S., Xagawa, K.: Improved quantum multicollision-finding algorithm. Proc. Postquantum Cryptogr. 2019, 350–367 (2019)
Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. Proc. Sel. Areas Cryptogr. SAC 2019, 492–519 (2019)
Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selcuk meet-in-the-middle attacks: applications to 6-round generic feistel constructions. In: Proceedings of Security and Cryptography for Networks, pp. 386–403 (2018)
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum Differential and Linear Cryptanalysis. arXiv:1510.05836 (2015)
Shi, T.R., Jin, C.H., Hu, B., Guan, J., Cui, J.Y., Wang, S.P.: Complete analysis of Simon’s quantum algorithm with additional collisions. Quantum Inf. Process. 18(11), 334 (2019)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant 62071240 and Grand 61802002, the Graduate Research and Innovation Projects of Jiangsu Province (KYCX20_0978), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB520028), and in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xu, Y., Liu, W. & Yu, W. Quantum forgery attacks on COPA, AES-COPA and marble authenticated encryption algorithms. Quantum Inf Process 20, 131 (2021). https://doi.org/10.1007/s11128-021-03036-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03036-w