Abstract
Quantum key distribution (QKD) enables two authenticated parties to share secret keys with the ability to detect any attempts to eavesdrop the keys theoretically. As a crucial step, information reconciliation protocol has a significant effect on the secret key rate and maximal transmission distance of continuous-variable quantum key distribution (CV-QKD) systems. To improve the secret key rate in practical CV-QKD systems with time-varying quantum channel, we propose an efficient rate-adaptive multidimensional information reconciliation protocol based on polar codes. Simulation results verify that our proposed rate-adaptive reconciliation protocol can enhance the secret key rate compared to that of the conventional reconciliation protocol.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
We denote \(K_{\ell }\) as the length of information at the \(\ell \)th retransmission, and take the first transmission as the 0th retransmission, thereby \(K_0 = K = NR_{\mathrm{max}}\). With the estimated channel reliability \(\varvec{\mathcal {\omega }}=[\omega _0, \omega _1, \cdots , \omega _{N-1}]\) in an ascending order, channel-bit index in \(A = \{\omega _{N-1}, \omega _{N-2}, \cdots , \omega _{N-K_{\ell }}\}\) and \(A^c = \{0,1, \cdots , N-1\}-A\) are used to send information bits \(\mathbf{u }_\mathcal {I}\) and frozen bits \(\mathbf{u }_\mathcal {F}\), respectively.
\(K_{\mathrm{step}}\) channel-bits in \(\mathcal {F'} = \{\omega _{N-K_{\ell -1}}, \cdots , \omega _{N-K_{\ell -1}+K_{\mathrm{step}}-1} \}\) are removed from A and added to \(A^c\) simultaneously. That is, \(A = A - \mathcal {F'}\), \(A^c = A^c + \mathcal {F'}\); information bits denoted by \(\mathbf{u }_\mathcal {F'}\) become frozen bits.
References
Morris, J. D., Grimaila, M. R., Hodson, D. D., Jacques, D., Baumgartner, G.: Chapter 9 - a survey of quantum key distribution (QKD) technologies, Emerging Trends in ICT Security, pp. 141-152 (2014)
Milicevic, M., Feng, C., Zhang, L.M., Gulak, P.G.: Key reconciliation with low-density parity-check codes for long-distance quantum cryptography. npj Quant. Inf. 4, 21 (2018)
Zuo, Z., Wang, Y., Huang, D., Guo, Y.: Atmospheric effects on satellite-mediated continuous-variable quantum key distribution. J. Phys. A Math. Theor. 53, 46 (2020)
Feng, Y., Wang, Y.-J., Qiu, R., Zhang, K., Ge, H., Shan, Z., Jiang, X.-Q.: Virtual channel of multidimensional reconciliation in a continuous-variable quantum key distribution. Phys. Rev. A 103, 3 (2021)
Jouguet, P., Kunz-Jacques, S., Leverrier, A.: Long-distance continuous-variable quantum key distribution with a Gaussian modulation. Phys. Rev. A 84, 6 (2011)
Assche, G.V., Cardinal, J., Cerf, N.J.: Reconciliation of a quantum-distributed Gaussian key. IEEE Trans. Inform. Theor. 50(2), 394–400 (2004)
Grosshans, F., Cerf, N.J., Wenger, J., Tualle-Brouri, R., Grangier, P.: Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables. Quantum Inf. Comput. 3, 535–552 (2003)
Jiang, X.-Q., Huang, P., Huang, D., Lin, D., Zeng, G.: Secret information reconciliation based on punctured low-density parity-check codes for continuous-variable quantum key distribution. Phys. Rev. A 95(2), 022318 (2017)
Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inform. Theor. 41(6), 1915–1923 (1995)
Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77(13), 2818–2821 (1998)
VanAssche, G., Cardinal, J., Cerf, N.J.: Reconciliation of a quantum-distributed Gaussian key. IEEE Trans. Inform. Theor. 50(2), 394–400 (2004)
Silberhorn, C., Ralph, T.C., Lutkenhaus, N., Leuchs, G.: Continuous variable quantum cryptography: beating the 3 dB loss limit. Phys. Rev. Lett. 89, 167901 (2002)
Namiki, R., Hirano, T.: Practical limitation for continuous-variable quantum cryptography using Coherent states. Phys. Rev. Lett. 92, 117901 (2004)
Leverrier, A., Alleaume, R., Boutros, J., Zemor, G., Grangier, P.: Multidimensional reconciliation for continuous-variable quantum key distribution. Phys. Rev. A 77, 042325 (2008)
Huang, D., Huang, P., Lin, D., Zeng, G.: Long-distance continuous-variable Quantum key distribution by controlling excess noise. Sci. Rep. 6, 19201-1-19201–6 (2016)
Wang, X., Zhang, Y.-C., Li, Z., Xu, B., Yu, S., Guo, H.: Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution. Quantum Inf. Comput. 17(13 & 14), 1123–1134 (2017). arXiv:1703.04916v2 [quant-ph]
Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes. IEEE Int. Symp. Inf. Theor. pp. 1173–1177 (2008)
Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inform. Theor. 55(7), 3051–3073 (2009)
Jouguet, P., Kunz-Jacques, S.: High performance error correction for quantum key distribution using polar codes. Quantum Inf. Comput. 14(34), 329 (2014). arXiv: 1204.5882
Lee, S., Park, J., Heo, J.: “Improved reconciliation with polar codes in quantum key distribution,” Quantum Inf. Comput. (2018), arXiv: 1805.05046v1
Yan, S., Wang, J., Fang, J., Jiang, L., Wang, X.: An improved polar codes-based key reconciliation for practical quantum key distribution. Chinese J. Electron. 27(2), 250–255 (2018)
Zhao, S.M., Shen, Z., Xiao, H., Wang, L.: Multidimensional reconciliation protocol for continuous-variable quantum key agreement with polar coding. Sci. China Phys. Mech. Astron. 61, 090323 (2018). https://doi.org/10.1007/s11433-017-9183-0
Zhou, J., Guo, Y.: Continuous-variable measurement-device-independent multipartite quantum communication using coherent states. J. Phys. Soc. Jpn. 86(2), 024003 (2017)
Daolong, Wu.: Li, Ying, Sun, Yue: Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation. IEEE Commun. Lett. 18(7), 1099–1102 (2014)
Dai, Jincheng: Niu, Kai, Si, Zhongwei, Dong, Chao, Li, Jiaru: Does Gaussian approximation work well for the long-length polar code construction? IEEE Access 5, 7950–7963 (2017)
He, Gaoning, Belfiore, Jean-Claude., Land, Ingmar, Yang, Ganghua, Liu, Xiaocheng, Chen, Ying, Li, Rong, Wang, Jun, Ge, Yiqun, Zhang, Ran, Tong, Wen: \(\beta \)-expansion: a theoretical framework for fast and recursive construction of polar codes. Proc. Globlecom. 2017, 1–6 (2017)
Bo, Y., Parhi, K.K.: Architecture optimizations for BP polar decoders, pp. 2654–2658. Acoustics, Speech and Signal Processing(ICASSP) (2013)
Kim, J., Kim, I., Kim, G., Song, H.: Reduced-complexity belief propagation decoding for polar codes. IEICE Trans. Fundament. E100–A(9), 2052–2055 (2017)
Balatsoukas-Stimming, Alexios, Parizi, M.B., Burg, A.: LLR-based successive cancellation list decoding of polar codes. IEEE Trans. Sign. Process. 63(19), 5165–5179 (2015)
Niu, K., Chen, K.: CRC-aided decoding of polar codes. IEEE Commun. Lett. 16(10), 1668–1671 (2012)
Grosshans, F., Assche, G.V., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature (London) 421, 238 (2003). https://doi.org/10.1038/nature01289
Grosshans, F., Assche, G., Wenger, J., Brouri, R., Cerf, N., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Lett. Nature 421, 238–241 (2003)
Lodewyck, J., Bloch, M., Garcia-Patron, R., Fossier, S., Karpov, E., Diamanti, E., Debuisschert, T., Cerf, N.J., Tualle-Brouri, R., McLaughlin, S.W., Grangier, P.: Quantum key distribution over 25km with an all-fiber continuous-variable system. Phys. Rev. A 76, 042305 (2007). arXiv: 0706.4255
Leverrier, A., Grangier, P.: Phys. Rev. A 83, 042312 (2011)
Ma, X., Sun, S., Jiang, M., Liang, L.: Phys. Rev. Lett. 88, 022339 (2013)
Acknowledgements
This research was supported by the National Natural Science Foundation of China (Grant No. 61601403), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (Grant No. CUSF-DH-D-2020084) and the State Key Laboratory of Advanced Optical Communication Systems and Networks (Grant No. 2020GZKF002), China.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, M., Hai, H., Feng, Y. et al. Rate-adaptive reconciliation with polar coding for continuous-variable quantum key distribution. Quantum Inf Process 20, 318 (2021). https://doi.org/10.1007/s11128-021-03248-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03248-0