Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Hide and seek with quantum resources: new and modified protocols for quantum steganography

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Steganography is the science of hiding and communicating a secret message by embedding it in an innocent looking text such that the eavesdropper is unaware of its existence. Previously, attempts were made to establish steganography using quantum key distribution (QKD). Recently, it has been shown that such protocols are vulnerable to a certain steganalysis attack that can detect the presence of the hidden message and suppress the entire communication. In this work, we elaborate on the vulnerabilities of the original protocol which make it insecure against this detection attack. Further, we propose a novel steganography protocol using discrete modulation continuous variable QKD that eliminates the threat of this detection-based attack. Deriving from the properties of our protocol, we also propose modifications to the original protocol to dispose of its vulnerabilities and make it insusceptible to steganalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. In the original protocol, Martin used 4m qubits, but it would have been more practical to use \(4(m + \delta )\) qubits to take care of the fluctuations and to ensure that with high proability 2m qubits are obtained in Step MQS5.

References

  1. Kahn, D.: The history of steganography,in International Workshop on Information Hiding ( Springer,1996) pp. 1–5

  2. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital watermarking and steganography (Morgan kaufmann (2007)

  3. JohnsonandS, N.F.: Jajodia, exploring steganography: seeing the unseen. Computer 31, 26–34 (1998)

    Article  Google Scholar 

  4. Fridrich, J.: Steganography in Digital Media: Principles, Algorithms, and Applications. Cambridge University Press, Cambridge, England, UK (2009)

    Book  Google Scholar 

  5. Andersonand, R.J., Petitcolas, F.A.: On the limits of steganography. IEEE J. Selected Areas Commun. 16, 474–481 (1998)

    Article  Google Scholar 

  6. Sallee, P.: Model-based steganographyin International Workshop on Digital Watermarking (Springer, 2003) pp.154–167

  7. Provos, N., Honeyman, P.: Hide and seek: an introduction to steganography. IEEE Secur. Privacy 1, 32–44 (2003)

    Article  Google Scholar 

  8. Cachin, C.: An information-theoretic model for steganography, in International Workshop on Information Hiding ( Springer, 1998) pp. 306–318

  9. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International conference on computers, systems, and signal processing ( Bangalore, 1984) pp. 175–179

  10. Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6, 1–47 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gea-Banacloche, J.: Hiding messages in quantum data. J. Math. Phys. 43, 4531–4536 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Shaw, B.A., Brun, T.A.: Quantum steganography with noisy quantum channels. Phys. Rev. A 83, 022310 (2011)

    Article  ADS  Google Scholar 

  13. Qu, Z.-G., Chen, X.-B., Zhou, X.-J., Niu, X.-X., Yang, Y.-X.: Novel quantum steganography with large payload. Opt. Commun. 283, 4782–4786 (2010)

    Article  ADS  Google Scholar 

  14. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016)

    Article  Google Scholar 

  15. Mihara, T.: Quantum steganography using prior entanglement. Phys. Lett. A 379, 952–955 (2015)

    Article  Google Scholar 

  16. Luo, G., Zhou, R.-G., Hu, W.: Efficient quantum steganography scheme using inverted pattern approach. Quantum Inf. Process. 18, 222 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Şahin, E., Yilmaz, I.: A novel quantum steganography algorithm based on LSBq for multi-wavelength quantum images. Quant. Inf. Process. 17, 319 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. Qu, Z., Cheng, Z., Wang, X.: Matrix coding-based quantum image steganography algorithm. IEEE Access 7, 35684–35698 (2019)

    Article  Google Scholar 

  19. El Allati, A., Medeni, M.O., Hassouni, Y.: Quantum steganography via Greenberger-Horne-Zeilinger GHZ\(_4\) state. Commun. Theor. Phys. 57, 577 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Martin, K.: Steganographic communication with quantum information. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) Information Hiding, pp. 32–49. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Qu, Z., Huang, Y., Zheng, M.: A novel coherence-based quantum steganalysis protocol. Quantum Inf. Process. 19, 362 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Namiki, R., Hirano, T.: Security of quantum cryptography using balanced homodyne detection. Phys. Rev. A 67, 022308 (2003)

    Article  ADS  Google Scholar 

  23. Namiki, R., Hirano, T.: Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. Phys. Rev. A 74, 032302 (2006)

    Article  ADS  Google Scholar 

  24. Holevo, A.S.: Statistical Structure of Quantum Theory. Springer-Verlag, Berlin, Germany (2001)

    Book  Google Scholar 

  25. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  26. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  27. Hirano, T., Ichikawa, T., Matsubara, T., Ono, M., Oguri, Y., Namiki, R., Kasai, K., Matsumoto, R., Tsurumaru, T.: Implementation of continuous-variable quantum key distribution with discrete modulation. Quantum Sci. Technol. 2, 024010 (2017)

    Article  ADS  Google Scholar 

  28. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)

    Article  ADS  Google Scholar 

  29. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  30. Ghorai, S., Grangier, P., Diamanti, E., Leverrier, A.: Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. X 9, 021059 (2019)

    Google Scholar 

  31. Kaur, E., Guha, S., Wilde, M.M.: Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution. Phys. Rev. A 103, 012412 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lin, J., Upadhyaya, T., Lütkenhaus, N.: Asymptotic security analysis of discrete-modulated continuous-variable quantum key distribution. Phys. Rev. X 9, 041064 (2019)

    Google Scholar 

  33. Borelli, L.F.M., Aguiar, L.S., Roversi, J.A., Vidiella-Barranco, A.: Quantum key distribution using continuous-variable non-Gaussian states. Quantum Inf. Process. 15, 893–904 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable B92 quantum key distribution protocol using single photon added and subtracted coherent states. Quant. Inf. Process. 19, 371 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., Diamanti, E.: Experimental demonstration of long-distance continuous-variable quantum key distribution. Nat. Photonics 7, 378–381 (2013)

    Article  ADS  Google Scholar 

  36. Zhang, Y., Chen, Z., Pirandola, S., Wang, X., Zhou, C., Chu, B., Zhao, Y., Xu, B., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125, 010502 (2020)

    Article  ADS  Google Scholar 

  37. Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quant. Inf. Process. 13, 2731–2743 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

RJ, AG, RS and AP acknowledge the support from the QUEST scheme of Interdisciplinary Cyber Physical Systems (ICPS) program of the Department of Science and Technology (DST), India (Grant No.: DST/ICPS/QuST/Theme-1/2019/14 (Q80)). KT acknowledges GA CR (project No. 18-22102S) and support from ERDF/ESF project ‘Nanotechnologies for Future’ (CZ.02.1.01/0.0/0.0/16 019/0000754). RS also acknowledges the support of DST, India, Grant No. MTR/2019/001516.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R., Gupta, A., Thapliyal, K. et al. Hide and seek with quantum resources: new and modified protocols for quantum steganography. Quantum Inf Process 21, 164 (2022). https://doi.org/10.1007/s11128-022-03514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03514-9