Abstract
We propose to represent both n-qubits and quantum gates acting on them as elements in the complex Clifford algebra defined on a complex vector space of dimension 2n. In this framework, the Dirac formalism can be realized in straightforward way. We demonstrate its functionality by performing quantum computations with several well known examples of quantum gates. We also compare our approach with representations that use real geometric algebras.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Alves, R., Hildenbrand, D., Hrdina, J., et al.: An online calculator for quantum computing operations based on geometric algebra. Adv. Appl. Clifford Algebras 32, 4 (2022)
Brackx, F., De Schepper, H., Sommen, F.: The Hermitean Clifford analysis toolbox. Adv. Appl. Clifford Algebras 18(3–4), 451–487 (2008)
Brackx, F., De Schepper, H., Souček, V.: On the structure of complex Clifford algebra. Adv. Appl. Clifford Algebras 21, 477–492 (2011)
Budinich, M.: On complex representations of Clifford algebra. Adv. Appl. Clifford Algebras (2019). https://doi.org/10.1007/s00006-018-0930-3
Budinich, P., Trautman, A.: Fock space description of simple spinors. J. Math. Phys. 30(9), 2125–2131 (1989)
Cafaro, C., Mancini, S.: A geometric algebra perspective on quantum computational gates and universality in quantum computing. Adv. Appl. Clifford Algebras 21, 493–519 (2011)
De Keninck, S.: Non-parametric realtime rendering of subspace objects in arbitrary geometric algebras. Lect. Notes Comput. Sci. 11542, 549–555 (2019)
de Lima Marquezino, F., Portugal, R., Lavor, C.: A Primer on Quantum Computing. Springer, Berlin (2019)
Doran, C., Gullans, S.R., Lasenby, A., Lasenby, J., Fitzgerald, W.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)
Ferreira, M., Sommen, F.: Complex boosts: a Hermitian Clifford algebra approach. Adv. Appl. Clifford Algebras 23, 339–362 (2013)
Fock, V.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75(9–10), 622–647 (1932). (in German)
Gregorič, M., Mankoč Borštnik, N.S.: Quantum gates and quantum algorithms with Clifford algebra technique. Int. J. Theor. Phys. 48, 507–515 (2009)
Hadfield, H., Hildenbrand, D., Arsenovic, A.: Gajit: symbolic optimisation and JIT compilation of geometric algebra in Python with GAALOP and Numba. Lect. Notes Comput. Sci. 11542, 499–510 (2019)
Hadfield, H., Wei, L., Lasenby, J.: The forward and inverse kinematics of a delta robot. Lect. Notes Comput. Sci. 12221, 447–458 (2020)
Havel, T.F., Doran, Ch.J.: Geometric algebra in quantum information processing. In: Quantum Computation and Information, 81–100, Contemp. Math., 305. American Mathematical Society (2000)
Hildenbrand, D., Franchini, S., Gentile, A., Vassallo, G., Vitabile, S.: GAPPCO: an easy to configure geometric algebra coprocessor based on GAPP programs. Adv. Appl. Clifford Algebras 27(3), 2115–2132 (2017)
Hildenbrand, D., Hrdina, J., Návrat, A., Vašík, P.: Local controllability of snake robots based on CRA, theory and practice. Adv. Appl. Clifford Algebras 30(1), 1–21 (2020)
Hrdina, J., Návrat, A., Vašík, P.: Conic fitting in geometric algebra setting. Adv. Appl. Clifford Algebras 29(4), 1–13 (2019)
Lasenby, A., et al.: 2-Spinors, twistors and supersymmetry in the spacetime algebra. In: Oziewicz, Z., et al. (eds.) Spinors, Twistors, Clifford Algebras and Quantum Deformations. Kluwer Academic, Dordrecht (1993)
Lounesto, P.: Clifford Algebra and Spinors, 2nd edn. Cambridge University Press, Cambridge (2006)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th Anniversary Cambridge University Press, Cambridge (2010)
Somaroo, S.S., Cory, D.G., Havel, T.F.: Expressing the operations of quantum computing in multiparticle geometric algebra. Phys. Lett. A 240(1–2), 1–7 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The authors was supported by the Grant No. FSI-S-20-6187.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hrdina, J., Návrat, A. & Vašík, P. Quantum computing based on complex Clifford algebras. Quantum Inf Process 21, 310 (2022). https://doi.org/10.1007/s11128-022-03648-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03648-w