Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum computing based on complex Clifford algebras

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose to represent both n-qubits and quantum gates acting on them as elements in the complex Clifford algebra defined on a complex vector space of dimension 2n. In this framework, the Dirac formalism can be realized in straightforward way. We demonstrate its functionality by performing quantum computations with several well known examples of quantum gates. We also compare our approach with representations that use real geometric algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alves, R., Hildenbrand, D., Hrdina, J., et al.: An online calculator for quantum computing operations based on geometric algebra. Adv. Appl. Clifford Algebras 32, 4 (2022)

    Article  MathSciNet  Google Scholar 

  2. Brackx, F., De Schepper, H., Sommen, F.: The Hermitean Clifford analysis toolbox. Adv. Appl. Clifford Algebras 18(3–4), 451–487 (2008)

    Article  MathSciNet  Google Scholar 

  3. Brackx, F., De Schepper, H., Souček, V.: On the structure of complex Clifford algebra. Adv. Appl. Clifford Algebras 21, 477–492 (2011)

    Article  MathSciNet  Google Scholar 

  4. Budinich, M.: On complex representations of Clifford algebra. Adv. Appl. Clifford Algebras (2019). https://doi.org/10.1007/s00006-018-0930-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Budinich, P., Trautman, A.: Fock space description of simple spinors. J. Math. Phys. 30(9), 2125–2131 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cafaro, C., Mancini, S.: A geometric algebra perspective on quantum computational gates and universality in quantum computing. Adv. Appl. Clifford Algebras 21, 493–519 (2011)

    Article  MathSciNet  Google Scholar 

  7. De Keninck, S.: Non-parametric realtime rendering of subspace objects in arbitrary geometric algebras. Lect. Notes Comput. Sci. 11542, 549–555 (2019)

    Article  Google Scholar 

  8. de Lima Marquezino, F., Portugal, R., Lavor, C.: A Primer on Quantum Computing. Springer, Berlin (2019)

    Book  Google Scholar 

  9. Doran, C., Gullans, S.R., Lasenby, A., Lasenby, J., Fitzgerald, W.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  10. Ferreira, M., Sommen, F.: Complex boosts: a Hermitian Clifford algebra approach. Adv. Appl. Clifford Algebras 23, 339–362 (2013)

    Article  MathSciNet  Google Scholar 

  11. Fock, V.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75(9–10), 622–647 (1932). (in German)

    Article  ADS  Google Scholar 

  12. Gregorič, M., Mankoč Borštnik, N.S.: Quantum gates and quantum algorithms with Clifford algebra technique. Int. J. Theor. Phys. 48, 507–515 (2009)

    Article  MathSciNet  Google Scholar 

  13. Hadfield, H., Hildenbrand, D., Arsenovic, A.: Gajit: symbolic optimisation and JIT compilation of geometric algebra in Python with GAALOP and Numba. Lect. Notes Comput. Sci. 11542, 499–510 (2019)

    Article  Google Scholar 

  14. Hadfield, H., Wei, L., Lasenby, J.: The forward and inverse kinematics of a delta robot. Lect. Notes Comput. Sci. 12221, 447–458 (2020)

    Article  Google Scholar 

  15. Havel, T.F., Doran, Ch.J.: Geometric algebra in quantum information processing. In: Quantum Computation and Information, 81–100, Contemp. Math., 305. American Mathematical Society (2000)

  16. Hildenbrand, D., Franchini, S., Gentile, A., Vassallo, G., Vitabile, S.: GAPPCO: an easy to configure geometric algebra coprocessor based on GAPP programs. Adv. Appl. Clifford Algebras 27(3), 2115–2132 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hildenbrand, D., Hrdina, J., Návrat, A., Vašík, P.: Local controllability of snake robots based on CRA, theory and practice. Adv. Appl. Clifford Algebras 30(1), 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  18. Hrdina, J., Návrat, A., Vašík, P.: Conic fitting in geometric algebra setting. Adv. Appl. Clifford Algebras 29(4), 1–13 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lasenby, A., et al.: 2-Spinors, twistors and supersymmetry in the spacetime algebra. In: Oziewicz, Z., et al. (eds.) Spinors, Twistors, Clifford Algebras and Quantum Deformations. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  20. Lounesto, P.: Clifford Algebra and Spinors, 2nd edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  21. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 10th Anniversary Cambridge University Press, Cambridge (2010)

  22. Somaroo, S.S., Cory, D.G., Havel, T.F.: Expressing the operations of quantum computing in multiparticle geometric algebra. Phys. Lett. A 240(1–2), 1–7 (1998)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Návrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors was supported by the Grant No. FSI-S-20-6187.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrdina, J., Návrat, A. & Vašík, P. Quantum computing based on complex Clifford algebras. Quantum Inf Process 21, 310 (2022). https://doi.org/10.1007/s11128-022-03648-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03648-w

Keywords

Mathematics Subject Classification