Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Satellite-based phase-matching quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD) has been experimentally verified over fiber-based link. However, it still remains problems to be solved. The key rate of QKD protocol naturally degrades with the channel transmittance (\(\eta \)) and the loss of fiber-based link increases exponentially with distance. It limits the scale of quantum communication network. Now phase-matching QKD (PM-QKD) modified from twin-field QKD has broken rate-distance limit and realized the goal that the key rate is dependent on the square root of the channel transmittance \(\left( \sqrt{\eta }\right) \). Satellite-based QKD works in free space without restriction of space. The characters of satellite-based link can be analyzed by using he elliptical beam model. Here, we adopt PM-QKD over satellite-based link. The scheme overcomes not only rate-distance limit, but also the restriction of fiber-based link. In this work the performance of two kinds of links is given with different weather conditions. The satellite communication widow is under consideration. Furthermore, the effects of data size and source error are discussed. The optimization of parameters is given and the performance is improved after optimization. This work is helpful for satellite-based quantum communication experiments as a reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM) 48(3), 351–406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    Article  ADS  Google Scholar 

  6. Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9(2), 021046 (2019)

    Google Scholar 

  7. Minder, M., Pittaluga, M., Roberts, G.L., Lucamarini, M., Dynes, J., Yuan, Z., Shields, A.J.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon. 13(5), 334–338 (2019)

    Article  ADS  Google Scholar 

  8. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.-L., Guan, J.-Y., Yu, Z.-W., Xu, H., Lin, J., et al.: Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124(7), 070501 (2020)

    Article  ADS  Google Scholar 

  9. Chen, J.-P., Zhang, C., Liu, Y., Jiang, C., Zhang, W.-J., Han, Z.-Y., Ma, S.-Z., Hu, X.-L., Li, Y.-H., Liu, H., et al.: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15(8), 570–575 (2021)

    Article  ADS  Google Scholar 

  10. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Zhu, Y.-G., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16(2), 154–161 (2022)

    Article  ADS  Google Scholar 

  11. Zhang, Y., Chen, Z., Pirandola, S., Wang, X., Zhou, C., Chu, B., Zhao, Y., Xu, B., Yu, S., Guo, H.: Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett. 125(1), 010502 (2020)

    Article  ADS  Google Scholar 

  12. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    Article  ADS  Google Scholar 

  13. Tang, G.-Z., Li, C.-Y., Wang, M.: Polarization discriminated time-bin phase-encoding measurement-device-independent quantum key distribution. Quantum Eng. 3(4), 79 (2021)

    Article  Google Scholar 

  14. Cui, Z.-X., Zhong, W., Zhou, L., Sheng, Y.-B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62(11), 1–10 (2019)

    Article  Google Scholar 

  15. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 400–403 (2018)

    Article  ADS  Google Scholar 

  16. Kwek, L.-C., Cao, L., Luo, W., Wang, Y., Sun, S., Wang, X., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31(1), 1–8 (2021)

    Article  Google Scholar 

  17. Xie, Y.-M., Li, B.-H., Lu, Y.-S., Cao, X.-Y., Liu, W.-B., Yin, H.-L., Chen, Z.-B.: Overcoming the rate-distance limit of device-independent quantum key distribution. Opt. Lett. 46(7), 1632–1635 (2021)

    Article  ADS  Google Scholar 

  18. Clivati, C., Meda, A., Donadello, S., Virzì, S., Genovese, M., Levi, F., Mura, A., Pittaluga, M., Yuan, Z., Shields, A.J., et al.: Coherent phase transfer for real-world twin-field quantum key distribution. Nat. Commun. 13(1), 1–9 (2022)

    Google Scholar 

  19. Teng, J., Yin, Z.-Q., Fan-Yuan, G.-J., Lu, F.-Y., Wang, R., Wang, S., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., et al.: Sending-or-not-sending twin-field quantum key distribution with multiphoton states. Phys. Rev. A 104(6), 062441 (2021)

    Article  ADS  Google Scholar 

  20. Liu, H., Jiang, C., Zhu, H.-T., Zou, M., Yu, Z.-W., Hu, X.-L., Xu, H., Ma, S., Han, Z., Chen, J.-P., et al.: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126(25), 250502 (2021)

    Article  ADS  Google Scholar 

  21. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)

    Article  ADS  Google Scholar 

  22. Jiang, C., Yu, Z.-W., Hu, X.-L., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution with discrete-phase-randomized weak coherent states. Phys. Rev. Res. 2(4), 043304 (2020)

    Article  Google Scholar 

  23. Hu, X.-L., Jiang, C., Yu, Z.-W., Wang, X.-B.: Sending-or-not-sending twin-field protocol for quantum key distribution with asymmetric source parameters. Phys. Rev. A 100(6), 062337 (2019)

    Article  ADS  Google Scholar 

  24. Yu, Z.-W., Hu, X.-L., Jiang, C., Xu, H., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep. 9(1), 1–8 (2019)

    ADS  Google Scholar 

  25. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  26. Li, B.-H., Xie, Y.-M., Li, Z., Weng, C.-X., Li, C.-L., Yin, H.-L., Chen, Z.-B.: Long-distance twin-field quantum key distribution with entangled sources. Opt. Lett. 46(22), 5529–5532 (2021)

    Article  ADS  Google Scholar 

  27. Currás-Lorenzo, G., Navarrete, Á., Azuma, K., Kato, G., Curty, M., Razavi, M.: Tight finite-key security for twin-field quantum key distribution. npj Quantum Inf. 7(1), 1–9 (2021)

    Article  Google Scholar 

  28. Wang, R., Yin, Z.-Q., Lu, F.-Y., Wang, S., Chen, W., Zhang, C.-M., Huang, W., Xu, B.-J., Guo, G.-C., Han, Z.-F.: Optimized protocol for twin-field quantum key distribution. Commun. Phys. 3(1), 1–7 (2020)

    Article  Google Scholar 

  29. Yin, H.-L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep. 9(1), 1–13 (2019)

    Article  ADS  Google Scholar 

  30. Yin, H.-L., Chen, Z.-B.: Coherent-state-based twin-field quantum key distribution. Sci. Rep. 9(1), 1–7 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Maeda, K., Sasaki, T., Koashi, M.: Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  32. Curty, M., Azuma, K., Lo, H..-K.: Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf. 5(1), 1–6 (2019)

    Article  Google Scholar 

  33. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  34. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A 98(4), 042332 (2018)

    Article  ADS  Google Scholar 

  35. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  36. Song, Z., Huang, G., Dong, Q., Jiao, R.: Analysis of three-intensity decoy-state phase-matching quantum key distribution. Eur. Phys. J. D 75(11), 1–5 (2021)

    Article  Google Scholar 

  37. Liao, S.-K., Yong, H.-L., Liu, C., Shentu, G.-L., Li, D.-D., Lin, J., Dai, H., Zhao, S.-Q., Li, B., Guan, J.-Y., et al.: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11(8), 509–513 (2017)

    Article  Google Scholar 

  38. Yin, J., Li, Y.-H., Liao, S.-K., Yang, M., Cao, Y., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, S.-L., et al.: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582(7813), 501–505 (2020)

    Article  ADS  Google Scholar 

  39. Chen, Y.-A., Zhang, Q., Chen, T.-Y., Cai, W.-Q., Liao, S.-K., Zhang, J., Chen, K., Yin, J., Ren, J.-G., Chen, Z., et al.: An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589(7841), 214–219 (2021)

    Article  ADS  Google Scholar 

  40. Wang, X..-f, Sun, X..-j, Liu, Y..-x, Wang, W., Kan, B..-x, Dong, P., Zhao, L..-l: Transmission of photonic polarization states from geosynchronous earth orbit satellite to the ground. Quantum Eng. 3(3), 73 (2021)

    Article  Google Scholar 

  41. Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020315 (2022)

    Article  ADS  Google Scholar 

  42. Zeng, P., Zhou, H., Wu, W., Ma, X.: Quantum key distribution surpassing the repeaterless rate-transmittance bound without global phase locking. arXiv preprint arXiv:2201.04300 (2022)

  43. Vasylyev, D., Semenov, A., Vogel, W.: Atmospheric quantum channels with weak and strong turbulence. Phys. Rev. Lett. 117(9), 090501 (2016)

    Article  ADS  Google Scholar 

  44. Vasylyev, D., Semenov, A., Vogel, W., Günthner, K., Thurn, A., Bayraktar, Ö., Marquardt, C.: Free-space quantum links under diverse weather conditions. Phys. Rev. A 96(4), 043856 (2017)

    Article  ADS  Google Scholar 

  45. Liorni, C., Kampermann, H., Bruß, D.: Satellite-based links for quantum key distribution: beam effects and weather dependence. New J. Phys. 21(9), 093055 (2019)

    Article  ADS  Google Scholar 

  46. Cai, R.Y., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New J. Phys. 11(4), 045024 (2009)

    Article  ADS  Google Scholar 

  47. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  48. Jiang, C., Yu, Z.-W., Wang, X.-B.: Measurement-device-independent quantum key distribution with source state errors in photon number space. Phys. Rev. A 94(6), 062323 (2016)

    Article  ADS  Google Scholar 

  49. Wang, Q., Wang, X.-B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61571060), Ministry of Science and Technology of China (Grant No. 2016YFA0301300) and Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongzhen Jiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Song, Z., Huang, G. et al. Satellite-based phase-matching quantum key distribution. Quantum Inf Process 21, 313 (2022). https://doi.org/10.1007/s11128-022-03656-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03656-w

Keywords