Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum coherence versus interferometric visibility in a biased Mach–Zehnder interferometer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The double-slit interferometer and the Mach–Zehnder interferometer (MZI) with balanced beam splitters are prototypical setups for investigating the quantum wave-particle duality. These setups induced a quantitative association of interferometric visibility (IVI) with the wave aspect of a single quantum system (WAQ). Recently, it was realized that quantum coherence (QC) can be better suited than IVI for quantifying the WAQ in complementarity relations. In this article, we investigate a MZI with biased beam splitters both in the input and in the output, and we show that in some cases the IVI is not adequate to quantify the WAQ since it does not reflect the behavior of the quantum coherence, even for a bi-dimensional closed quantum system. Using IBM quantum computers, we experimentally verify our theoretical findings by doing a full quantum simulation of the optical MZI with biased beam splitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The Qiskit code used for implementing the simulations and experiments used to obtain the data utilized in this article is available upon request to the authors.

Notes

  1. In the cases where \(\Pr (D_j)_{\min }=0\), we have \({\mathcal {V}}_j=(\Pr (D_j)_{\max }-\Pr (D_j)_{\min })/(\Pr (D_j)_{\max }+\Pr (D_j)_{\min })=1\), for \(j = 0\) or 1, even for \(P(D_j)_{\max }\ll 1\). So, if we have a limited number of quantons to experiment with, we see that \({\mathcal {V}}_j'={\mathcal {V}}_j\Pr (D_{j})_{\max }\) would be a better quantifier for the visibility of the interference fringes contrast. It is worthwhile though noticing that this change would not solve the problems IVI has regarding the quantification of the wave character of a quanton.

References

  1. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)

    Article  ADS  MATH  Google Scholar 

  2. Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473 (1979)

    Article  ADS  Google Scholar 

  3. Auccaise, R., Serra, R.M., Filgueiras, J.G., Sarthour, R.S., Oliveira, I.S., Céleri, L.S.: Experimental analysis of the quantum complementarity principle. Phys. Rev. A 85, 032121 (2012)

    Article  ADS  Google Scholar 

  4. Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)

    Article  ADS  Google Scholar 

  5. Englert, B.-G.: Fringe visibility and which-way information: An inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  6. Angelo, R.M., Ribeiro, A.D.: Wave-particle duality: an information-based approach. Found. Phys. 45, 1407 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  8. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)

    Article  ADS  Google Scholar 

  9. Coles, P.J.: Entropic framework for wave-particle duality in multipath interferometers. Phys. Rev. A 93, 062111 (2016)

    Article  ADS  Google Scholar 

  10. Bagan, E., Calsamiglia, J., Bergou, J.A., Hillery, M.: Duality games and operational duality relations. Phys. Rev. Lett. 120, 050402 (2018)

    Article  ADS  MATH  Google Scholar 

  11. Basso, M.L.W., Chrysosthemos, D.S.S., Maziero, J.: Quantitative wave-particle duality relations from the density matrix properties. Quant. Inf. Process. 19, 254 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Basso, M.L.W., Maziero, J.: An uncertainty view on complementarity and a complementarity view on uncertainty. Quantum Inf. Process. 20, 201 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  13. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  14. Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multi-path interference. Phys. Rev. A 100, 042122 (2019)

    Article  ADS  Google Scholar 

  15. Qureshi, T.: Coherence. interference and visibility. Quanta 8, 24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mei, M., Weitz, M.: Controlled decoherence in multiple beam ramsey interference. Phys. Rev. Lett. 86, 559 (2001)

    Article  ADS  Google Scholar 

  17. Dürr, S.: Quantitative wave-particle duality in multibeam interferometers. Phys. Rev. A 64, 042113 (2001)

    Article  ADS  Google Scholar 

  18. Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quantum Inf. 6, 129 (2008)

    Article  MATH  Google Scholar 

  19. Jakob, M., Bergou, J.A.: Quantitative complementarity relations in bipartite systems: entanglement as a physical reality. Opt. Comm. 283, 827 (2010)

    Article  ADS  Google Scholar 

  20. Basso, M.L.W., Maziero, J.: Complete complementarity relations for multipartite pure states. J. Phys. A: Math. Theor. 53, 465301 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Qureshi, T.: Predictability, distinguishability and entanglement. Opt. Lett. 46, 492 (2021)

    Article  ADS  Google Scholar 

  22. Basso, M.L.W., Maziero, J.: Entanglement monotones connect distinguishability and predictability. Phys. Lett. A 425, 127875 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bilobran, L.O., Angelo, R.M.: A measure of physical reality. Europhys. Lett. 112, 40005 (2015)

    Article  ADS  Google Scholar 

  24. Basso, M.L.W., Maziero, J.: Complete complementarity relations: connections with EPR realism and decoherence and extension to mixed quantum states. Europhys. Lett. 135, 60002 (2021)

    Article  ADS  Google Scholar 

  25. Basso, M.L.W., Maziero, J.: Complete complementarity relations and their Lorentz invariance. Proc. R. Soc. A. 477, 20210058 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. Basso, M.L.W., Maziero, J.: Complete complementarity relations in curved spacetimes. Phys. Rev. A 103, 032210 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  27. Ellis, J.D.: Field guide to displacement measuring interferometry. Spie Press, USA (2014)

    Book  Google Scholar 

  28. Auletta, G., Fortunato, M., Parisi, G.: Quantum mechanics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  29. Li, L., Liu, N.-L., Yu, S.: Duality relations in a two-path interferometer with an asymmetric beam splitter. Phys. Rev. A 85, 054101 (2012)

    Article  ADS  Google Scholar 

  30. Liu, Y., Lu, J., Zhou, L.: Complementarity via error-free measurement in a two-path interferometer. Laser Phys. Lett. 14, 055204 (2017)

    Article  ADS  Google Scholar 

  31. Cavalcanti, C.J.H., Ostermann, F., Netto, J.S., Lima, N.W.: Software-aided discussion about classical picture of Mach-Zehnder interferometer. Eur. J. Phys. 38, 065703 (2017)

    Article  Google Scholar 

  32. Cavalcanti, C.J.H., Ostermann, F., Netto, J.S., Lima, N.W.: Teaching wave-particle complementarity using the virtual Mach-Zehnder interferometer. Rev. Bras. Ens. Fis. 42, e20190283 (2020)

    Article  Google Scholar 

  33. Chen, D.-X.: Experimental investigation of wave-particle duality relations in asymmetric beam interference. Quantum Inf. 8, 101 (2022)

    Article  Google Scholar 

  34. Ionicioiu, R., Terno, D.R.: Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107, 230406 (2011)

    Article  ADS  Google Scholar 

  35. Ma, X.-S., Kofler, J., Zeilinger, A.: Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 88, 015005 (2016)

    Article  ADS  Google Scholar 

  36. Dieguez, P.R., Guimarães, J.R., Peterson, J.P.S., Angelo, R.M., Serra, R.M.: Experimental assessment of physical realism in a quantum controlled device. Commun. Phys. 5, 82 (2022)

    Article  Google Scholar 

  37. IBM Quantum, https://quantum-computing.ibm.com/

  38. Sajid Anis, MD: et al., Qiskit: An Open-source Framework for Quantum Computing (2021)

Download references

Acknowledgements

This work was supported by the Universidade Federal do ABC (UFABC), process 23006.000123/2018-23, by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), process 88887.649600/2021-00, by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), process 309862/2021-3, and by the Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 465469/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Maziero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chrysosthemos, D.S.S., Basso, M.L.W. & Maziero, J. Quantum coherence versus interferometric visibility in a biased Mach–Zehnder interferometer. Quantum Inf Process 22, 68 (2023). https://doi.org/10.1007/s11128-022-03800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03800-6

Keywords