Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust adiabatic composite pulses for quantum population inversion

  • Letter
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The population inversion plays a vital role in a common two-level system during the quantum information process. While the process is not so reliable due to some objective factors (e.g., pulse design, noise, unwanted frequency chirp, etc.), to solve these problems, we numerically studied the population inversion in a single superconducting qubit. We corrected the errors during the process by using adiabatic composite pulses. With the help of the adiabatic composite pulses, the fidelity of the population inversion is high enough for a single-qubit "NOT" gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Struck, J., Windpassinger, P., Sengstock, K., et al.: Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011)

    Article  ADS  Google Scholar 

  3. Peng, X., Du, J., Suter, D.: Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer. Phys. Rev. A 71, 012307 (2005)

    Article  ADS  Google Scholar 

  4. You, J.Q., Nori, F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68, 064509 (2003)

    Article  ADS  Google Scholar 

  5. Chao-Yang, L., Gao, W.-B., Göhne, O., Zhou, X.-Q., Chen, Z.-B., Pan, J.-W.: Demonstrating anyonic fractional statistics with a six-qubit quantum simulator. Phys. Rev. Lett. 102, 030502 (2009)

    Article  Google Scholar 

  6. Knill, E.: Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005)

    Article  ADS  Google Scholar 

  7. Gottesman, D.: Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127 (1998)

    Article  ADS  Google Scholar 

  8. Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic techniques. Annu. Rev. Phys. Chem. 52, 763–809 (2001)

    Article  ADS  Google Scholar 

  9. Genov, G.T., Schraft, D., Halfmann, T., Vitanov, N.V.: Correction of arbitrary field errors in population inversion of quantum systems by universal composite pulses. Phys. Rev. Lett. 113, 043001 (2014)

    Article  ADS  Google Scholar 

  10. Loudyi, H., Guyot, Y., Kazanskii, S.A., Gacon, J.C., Moine, B., Pédrini, C., Joubert, M.-F.: Analysis of the photoconduction in \(CaF_{2}:Eu^{2+}\) crystals using the microwave resonant cavity technique. Phys. Rev. B 78, 045111 (2008)

    Article  ADS  Google Scholar 

  11. Makhlin, Y., Schon, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  MATH  Google Scholar 

  12. Simmonds, R.W., Lang, K.M., Hite, D.A., Nam, S., Pappas, D.P., Martinis, J.M.: Decoherence in Josephson phase qubits from junction resonators. Phys. Rev. Lett. 93, 077003 (2004)

    Article  ADS  Google Scholar 

  13. Gaubatz, U., Rudecki, P., Schiemann, S., Bergmann, K.: Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. J. Chem. Phys. 92, 5363 (1990)

    Article  ADS  Google Scholar 

  14. Kis, Z., Paspalakis, E.: Arbitrary rotation and entanglement of flux SQUID qubits. Phys. Rev. B 69, 024510 (2004)

    Article  ADS  Google Scholar 

  15. Torosov, B.T., Vitanov, N.V.: Smooth composite pulses for high-fidelity quantum information processing. Phys. Rev. A 83, 053420 (2011)

    Article  ADS  Google Scholar 

  16. Nie, W., Huang, J.S., Shi, X., Wei, L.F.: Quantum state engineering with flux-biased Josephson phase qubits by rapid adiabatic passages. Phys. Rev. A 82, 032319 (2010)

    Article  ADS  Google Scholar 

  17. Dargys, A.: Hole spin dynamics under \(\pi \) pulse excitation Phys. Rev. B 70, 125207 (2004)

    Article  Google Scholar 

  18. Torosov, Boyan T., Ivanov, Svetoslav S., Vitanov, Nikolay V.: Narrowband and passband composite pulses for variable rotations. Phys. Rev. A 102, 013105 (2020)

  19. Bowdrey, M.D., Jones, J.A.: Narrowband and passband composite pulses for variable rotations. Phys. Rev. A 74, 052324 (2006)

    Article  ADS  Google Scholar 

  20. Safaei, S., Montangero, S., Taddei, F., Fazio, R.: Optimized single-qubit gates for Josephson phase qubits. Phys. Rev. B 79, 064524 (2009)

    Article  ADS  Google Scholar 

  21. Dridi, G., Mejatty, M., Glaser, S.J., Sugny, D.: Robust control of a not gate by composite pulses. Phys. Rev. A 101, 012321 (2020)

    Article  ADS  Google Scholar 

  22. Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.S., Oliver, W.D.: Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011)

    Article  Google Scholar 

  23. Steane, A.M.: Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003)

    Article  ADS  Google Scholar 

  24. Bason, M., Viteau, M., Malossi, N., et al.: High-fidelity quantum driving. Nat. Phys. 8, 147–152 (2012)

    Article  Google Scholar 

  25. Kyoseva, E., Greener, H., Suchowski, H.: Detuning-modulated composite pulses for high-fidelity robust quantum control. Phys. Rev. A 100, 032333 (2019)

    Article  ADS  Google Scholar 

  26. Souza, A.M., Aélvarez, G., Suter, D.: Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011)

    Article  ADS  Google Scholar 

  27. Levine, H., Keesling, A., Semeghini, G., Omran, A., Wang, T.T., Ebadi, S.: Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019)

    Article  ADS  Google Scholar 

  28. Metcalf, H.J., Van der Straten, P.: Laser Cooling and Trapping. Springer, New York (2012)

    Google Scholar 

  29. Liu, R.-B., Yao, W., Sham, L.J.: Quantum computing by optical control of electron spins. Adv. Phys. 59, 703–802 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Zhejiang Province of China (Grants No. LQ23A050005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Gong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, B., Tu, T. Robust adiabatic composite pulses for quantum population inversion. Quantum Inf Process 22, 329 (2023). https://doi.org/10.1007/s11128-023-04074-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04074-2