Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

The Feasible Hyper-encoding Measurement-device-independent Deterministic Secure Quantum Communication Protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Deterministic secure quantum communication (DSQC) can directly transmit ciphertext through the quantum channels. Measurement-device-independent (MDI) DSQC can resist all possible attacks on the imperfect measurement devices. Comparing with conventional DSQC protocols, MDI-DSQC has relatively low ciphertext transmission rate. In this paper, we propose a hyper-encoding MDI-DSQC protocol. The hyper-encoding can effectively increase single photon’s capacity and thus increase the ciphertext transmission rate of MDI-DSQC. Our protocol adopts the high-efficient linear-optical partial hyperentangled Bell state analysis, which is feasible under current experimental condition. Our MDI-DSQC protocol is secure in theory. We provide the numerical simulation of its ciphertext transmission rate. Our hyper-encoding MDI-DSQC protocol may have potential application in the quantum communication field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors declare that all data and models generated or used during the study appear in the submitted article.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175-179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    ADS  Google Scholar 

  4. Xu, F.H., Curty, M., Qi, B., Lo, H.K.: Practical aspects of measurement-device-independent quantum key distribution. New J. Phys. 15, 113007 (2013)

    ADS  MATH  Google Scholar 

  5. Xu, F.H., Ma, X.F., Zhang, Q., Lo, H.K., Pan, J.W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020)

    ADS  MathSciNet  Google Scholar 

  6. Chen, Y.A., Zhang, Q., Chen, T.Y., et al.: An integrated space-to-ground quantum communication network over 4600 km. Nature 589, 214 (2021)

    ADS  Google Scholar 

  7. Wang, X.F., Sun, X.J., Liu, Y.X., et al.: Transmission of photonic polarization states from geosynchronous Earth orbit satellite to the ground. Quant. Eng. 3, e73 (2021)

    Google Scholar 

  8. Yin, Z.Q., Lu, F.Y., Teng, J., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Twin-field protocols: towards intercity quantum key distribution without quantum repeaters. Fundam. Res. 1, 93 (2021)

    Google Scholar 

  9. Kwek, L.C., Cao, L., Luo, W., Wang, Y.X., Sun, S.H., Wang, X.B., Liu, A.Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    ADS  Google Scholar 

  10. Wang, S., Yin, Z.Q., He, D.Y., et al.: Twin-field quantum key distribution over 830 km fibre. Nat. Photon. 16, 154 (2022)

    ADS  Google Scholar 

  11. Liu, B., Xia, S., Xiao, D., Huang, W., Xu, B.J., Li, Y.: Decoy-state method for quantum-key-distribution-based quantum private query. Sci. China Phys. Mech. Astron. 65, 240312 (2022)

    ADS  Google Scholar 

  12. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    ADS  Google Scholar 

  13. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    ADS  Google Scholar 

  14. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    ADS  Google Scholar 

  15. Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Google Scholar 

  16. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    ADS  Google Scholar 

  17. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65, 12–20 (2020)

    Google Scholar 

  18. Zhou, Z.R., Sheng, Y.B., Niu, P.H., Yin, L.G., Long, G.L.: Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 63, 230362 (2019)

    Google Scholar 

  19. Liu, X., Li, Z.J., Luo, D., Huang, C.F., Ma, D., Geng, M.M., Wang, J.W., Zhang, Z.R., Wei, K.J.: Practical decoy-state quantum secure direct communication. Sci. China Phys. Mech. Astron. 64, 120311 (2021)

    ADS  Google Scholar 

  20. Cao, Z.W., Wang, L., Liang, K.X., et al.: Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl. 16, 024012 (2021)

    ADS  Google Scholar 

  21. Qi, Z.T., Li, Y.H., Huang, W.Y., et al.: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183 (2021)

    ADS  Google Scholar 

  22. Rong, Z.B., Qiu, D.W., Mateus, P., Zou, X.F.: Mediated semi-quantum secure direct communication. Quant. Inform. Process. 20, 58 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, H.R., Sun, Z., Qi, R.Y., Yin, L.G., Long, G.L., Lu, J.H.: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum. Light Sci. Appl. 11, 83 (2022)

    ADS  Google Scholar 

  24. Long, G.L., Pan, D., Sheng, Y.B., Xue, Q.K., Lu, J.H., Hanzo, L.: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36, 82–88 (2022)

    Google Scholar 

  25. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67, 367–374 (2022)

    Google Scholar 

  26. Zhou, L., Sheng, Y.B.: One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron. 65, 250311 (2022)

    ADS  Google Scholar 

  27. Ying, J.W., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B 31, 120303 (2022)

    ADS  Google Scholar 

  28. Liu, X., Luo, Di., Lin, G.S., et al.: Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron. 65, 120311 (2022)

    ADS  Google Scholar 

  29. Wang, P., Chen, X.H., Sun, Z.W.: Semi-quantum secure direct communication against collective-dephasing noise. Quant. Inform. Process. 21, 352 (2022)

    ADS  MathSciNet  Google Scholar 

  30. Zhou, L., Xu, B.W., Zhong, W., Sheng, Y.B.: Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl. 19, 014036 (2023)

    ADS  Google Scholar 

  31. Srikara, S., Thapliyal, K., Pathak, A.: Continuous variable direct secure quantum communication using Gaussian states. Quant. Inform. Process. 19, 132 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Dutta, A., Pathak, A.: Controlled secure direct quantum communication inspired scheme for quantum identity authentication. Quant. Inform. Process. 22, 13 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114, 090501 (2015)

    ADS  Google Scholar 

  35. Wang, T.Y., Wang, X.X., Cai, X.Q., Wei, C.Y., Zhang, R.L.: Analysis of efficient and secure dynamic quantum secret sharing protocol based on Bell states. Quant. Inform. Process. 20, 7 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Gu, J., Xie, Y.M., Liu, W.B., Fu, Y., Yin, H.L., Chen, Z.B.: Secure quantum secret sharing without signal disturbance monitoring. Opt. Express 29, 32244–32255 (2021)

    ADS  Google Scholar 

  37. Ju, X.X., Zhong, W., Sheng, Y.B., Zhou, L.: Measurement-device-independent quantum secret sharing with hyper-encoding. Chin. Phys. B 31, 100302 (2022)

    ADS  Google Scholar 

  38. Shimizu, K., Imoto, N.: Communication channels secured from eavesdropping via transmission of photonic bell states. Phys. Rev. A 60, 157 (1999)

    ADS  Google Scholar 

  39. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with single-photon two-qubit states. J. Phys. A Math. Gen. 35, L407–L413 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Li, X.H., Deng, F.G., Li, C.Y., et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49, 1354–1359 (2006)

    Google Scholar 

  41. Yuan, H., Song, J., He, Q., Han, L.F., Hou, K., Hu, X.Y., Shi, S.H.: Robust quantum secure direct communication and deterministic secure quantum communication over collective dephasing noisy channel. Commun. Theor. Phys. 50, 627–632 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Phys. Mech. Astron. 52, 1913–1918 (2009)

    ADS  Google Scholar 

  43. Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18, 4105–4109 (2009)

    ADS  Google Scholar 

  44. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282, 333–337 (2009)

    ADS  Google Scholar 

  45. Tsai, C.W., Hwang, T.: Deterministic quantum communication using the symmetric W state. Sci. China Phys. Mech. Astron. 56, 1903–1908 (2013)

    ADS  Google Scholar 

  46. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quant. Inform. Process. 14, 2195–2210 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Elsayed, T.A.: Deterministic secure quantum communication with and without entanglement. Phys. Scr. 96, 025101 (2021)

    ADS  Google Scholar 

  48. Li, J., Yang, Y.G., Li, J., Wang, Y.C., Yang, Y.L., Zhou, Y.H., Shi, W.M.: Deterministic secure quantum communication based on spatial encoding. Quantum Inf. Process. 21, 2 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Guo, H., Li, Y.X., Wei, J.H., Tang, J., Cao, Y.X.: Multi-party deterministic secure quantum communication using d-dimension GHZ state. Mod. Phys. Lett. B 36, 2250129 (2022)

    ADS  Google Scholar 

  50. Wei, Y.Y., Gao, Z.K., Wang, S.Y., Zhu, Y.J., Li, T.: Deterministic secure quantum communication with double-encoded single photons. Acta Phys. Sin. 71, 050302 (2022)

    Google Scholar 

  51. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.F.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73–82 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011)

    ADS  Google Scholar 

  53. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    ADS  Google Scholar 

  54. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photon. 4, 686–689 (2010)

    ADS  Google Scholar 

  55. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)

    ADS  Google Scholar 

  56. Cui, Z.X., Zhong, W., Zhou, L., Sheng, Y.B.: Measurement-device-independent quantum key distribution with hyper-encoding. Sci. China Phys. Mech. Astron. 62, 110311 (2019)

    ADS  Google Scholar 

  57. Yan, Y.F., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys. 16, 11501 (2021)

    ADS  Google Scholar 

  58. Wu, X.D., Zhou, L., Zhong, W., Sheng, Y.B.: High-capacity measurement-device-independent quantum secure direct communication. Quant. Inf. Process. 19, 354 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Zou, Z.K., Zhou, L., Zhou, W., Sheng, Y.B.: Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon. EPL 131, 40005 (2020)

    ADS  Google Scholar 

  60. Yang, M.Y., Zhao, P., Zhou, L., Zhong, W., Sheng, Y.B.: Feasible high-dimensional measurement-device-independent quantum key distribution. Laser Phys. Lett. 18, 075204 (2021)

    ADS  Google Scholar 

  61. Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    ADS  Google Scholar 

  62. Li, X.H., Ghose, S.: Hyperentangled bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)

    ADS  Google Scholar 

  63. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Complete hyperentangled-bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664–24677 (2012)

    ADS  Google Scholar 

  64. Wang, T.J., Lu, Y., Long, G.L.: Generation and complete analysis of the hyperentangled bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A 86, 042337 (2012)

    ADS  Google Scholar 

  65. Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016)

    ADS  Google Scholar 

  66. Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A 91, 062321 (2015)

    ADS  Google Scholar 

  67. Wang, T.J., Wang, C.: Complete hyperentangled-bell-state analysis for photonic qubits assisted by a three-level \(\lambda \)-type system. Sci. Rep. 6, 19497 (2016)

    ADS  Google Scholar 

  68. Su, S.L., Guo, F.Q., Tian, L., Zhu, X.Y., Yan, L.L., Liang, E.J., Feng, M.: Nondestructive Rydberg parity meter and its applications. Phys. Rev. A 101, 012347 (2020)

    ADS  Google Scholar 

  69. Yang, Y.G., Dong, J.R., Yang, Y.L., Li, J., Zhou, Y.H., Shi, W.M.: High-capacity measurement-device-independent deterministic secure quantum communication. Quant. Inf. Process. 20, 203 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  70. Kwiat, P.G., Weinfurter, H.: Embedded bell-state analysis. Phys. Rev. A 58, R2623 (1998)

    ADS  MathSciNet  Google Scholar 

  71. Gao, C.Y., Ren, B.C., Zhang, Y.X., Ai, Q., Deng, F.G.: Universal linear-optical hyperentangled bell-state measurement. Appl. Phys. Express 13, 027004 (2020)

    ADS  Google Scholar 

  72. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    ADS  Google Scholar 

  73. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    ADS  Google Scholar 

  74. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    ADS  Google Scholar 

  75. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  76. Zhang, W.J., You, L.X., Li, H., Huang, J., Lv, C.L., Zhang, L., Liu, X.Y., Wu, J.J., Wang, Z., Xie, X.M.: Nbn superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314 (2017)

    Google Scholar 

  77. Tang, Z.Y., Liao, Z.F., Xu, F.H., Qi, B., Qian, L., Lo, H.K.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11974189, 12175106, and 92365110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Ethics declarations

Conflict of interest

The authors declare that there is not any possible conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Detailed calculation of the yield and QBER

Appendix A: Detailed calculation of the yield and QBER

In this section, we provide the detailed calculation of the yield \(Y_{ZP}^{1,1}\) and \(Y_{XP}^{1,1}\), and the error rate \(e_{ZP}^{1,1}\) and \(e_{XP}^{1,1}\) of our MDI-DSQC protocol with the HBSA in Ref. [71]. The HBSA system consists of linear-optical elements such as BSs, PBSs, and quarter wave plates (QWPs). Each of the input photons needs to pass through a QWP, which causes \(|H\rangle \rightarrow \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle )\) and \(|V\rangle \rightarrow \frac{1}{\sqrt{2}}(|H\rangle - |V\rangle )\). The HBSA system contains eight single photon detectors with the background rate of \(Y_{0}\) and the detection efficiency of \(\eta _{d}\) in total. Charlie could divide the 16 hyperentangled states into 14 groups based on the detector responses and the photons’ time-bin features. We suppose the total misalignment error rates in the polarization and momentum DOFs as \(e_{dP}\) and \(e_{dM}\), respectively. Besides, we consider the distance from Charlie to Alice \((L_{ac})\) is the same as that from Charlie to Bob \((L_{bc})\). The channel transmission efficiencies of Alice’s and Bob’s channels can be calculated as \(t_{a}=10^{-\alpha {{L}_{ac}}/10}\) and \(t_{b}=10^{-\alpha L_{bc}/10}\) (\(\alpha =0.2\) dB/km for a standard optical fiber).

Firstly, we consider the calculation of the yield in the polarization DOF, which can be divided into two groups based on the basis selection. In the first group, Alice and Bob choose Z basis in the polarization DOF, and the partial HBSA protocol would not cause any error, so that all the detector clicks are valid. There are four specific cases based on the encoded bits. In the first case, Alice and Bob encode 00. There are four possible detection cases as

$$\begin{aligned} |H\rangle _{A}|H\rangle _{B}\rightarrow & {} \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle ) \otimes \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle )=\frac{1}{2}(|HH\rangle + |HV\rangle + |VH\rangle + |VV\rangle ), \nonumber \\ |H\rangle _{A}|0\rangle _{B}\rightarrow & {} \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle ) \otimes |0\rangle = \frac{1}{\sqrt{2}}(|H\rangle |0\rangle + |V\rangle |0\rangle ), \nonumber \\ |0\rangle _{A}|H\rangle _{B}\rightarrow & {} |0\rangle \otimes \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle ) = \frac{1}{\sqrt{2}}(|H\rangle |0\rangle + |V\rangle |0\rangle ), \nonumber \\ |0\rangle _{A}|0\rangle _{B}\rightarrow & {} |0\rangle |0\rangle , \end{aligned}$$
(A1)

where the state \(|0\rangle \) denotes that the transmitted photon is lost during the transmission process. In this case, there are four responses of the yield of the signal states as

$$\begin{aligned} Y_{ZP,HH(00)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + \frac{1}{2}t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +\frac{1}{2}(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] , \nonumber \\ Y_{ZP,HV(00)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] , \nonumber \\ Y_{ZP,VH(00)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] , \nonumber \\ Y_{ZP,VV(00)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + \frac{1}{2}t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +\frac{1}{2}(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] . \end{aligned}$$
(A2)

In this way, we can obtain

$$\begin{aligned} Y_{ZP,00}^{1,1}= & {} Y_{ZP,HH(00)}^{1,1}+Y_{ZP,HV(00)}^{1,1} +Y_{ZP,VH(00)}^{1,1}+Y_{ZP,VV(00)}^{1,1}\nonumber \\= & {} (1-Y_{0})^{6}[t_{a}t_{b}\eta _{d}^{2} + 3t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} + 3(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0}\nonumber \\{} & {} +4(1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}]. \end{aligned}$$
(A3)

In the second case, when Alice and Bob encode 01, there are four responses of the yield of the signal states as

$$\begin{aligned} Y_{ZP,HH(01)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + \frac{1}{2}t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +\frac{1}{2}(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] , \nonumber \\ Y_{ZP,HV(01)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] , \nonumber \\ Y_{ZP,VH(01)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] , \nonumber \\ Y_{ZP,VV(01)}^{1,1}= & {} (1-Y_{0})^{6}\left[ \frac{1}{4}t_{a}t_{b}\eta _{d}^{2} + \frac{1}{2}t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \right. \nonumber \\{} & {} \left. +\frac{1}{2}(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + (1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}\right] . \end{aligned}$$
(A4)

In this case, we can obtain

$$\begin{aligned} Y_{ZP,01}^{1,1}= & {} Y_{ZP,HH(01)}^{1,1}+Y_{ZP,HV(01)}^{1,1} +Y_{ZP,VH(01)}^{1,1}+Y_{ZP,VV(01)}^{1,1}\nonumber \\= & {} (1-Y_{0})^{6}[t_{a}t_{b}\eta _{d}^{2} + 3t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} + 3(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} \nonumber \\{} & {} +4(1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}]. \end{aligned}$$
(A5)

Similarly, we can also obtain

$$\begin{aligned} Y_{ZP,10}^{1,1}= & {} Y_{ZP,11}^{1,1} =(1-Y_{0})^{6}[t_{a}t_{b}\eta _{d}^{2} + 3t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} + 3(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} \nonumber \\{} & {} +4(1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}]. \end{aligned}$$
(A6)

Finally, we can calculate the yield \(Y_{ZP}^{1,1}\) and the error rate \(e_{ZP}^{1,1}\) as

$$\begin{aligned} Y_{ZP}^{1,1}= & {} \frac{1}{4}(Y_{ZP,00}^{1,1} +Y_{ZP,01}^{1,1}+Y_{ZP,10}^{1,1}+Y_{ZP,11}^{1,1})\nonumber \\= & {} (1-Y_{0})^{6}[t_{a}t_{b}\eta _{d}^{2} + 3t_{a}\eta _{d}(1-t_{b}\eta _{d})Y_{0} \nonumber \\{} & {} +3(1-t_{a}\eta _{d})t_{b}\eta _{d}Y_{0} + 4(1-t_{a}\eta _{d})(1-t_{b}\eta _{d})Y_{0}^{2}]. \end{aligned}$$
(A7)
$$\begin{aligned} e_{ZP}^{1,1}= & {} \frac{1}{2}-\frac{t_{a}t_{b}\eta _{d}^{2}(1-e_{dP})^{2}(1-Y_{0})^{6}}{2Y_{ZP}^{1,1}}. \end{aligned}$$
(A8)

In the second group, when Alice and Bob choose X basis in the polarization DOF, the partial HBSA protocol cannot distinguish states \(|\phi _{P}^{\pm }\rangle \) when the quantum state in the momentum DOF is \(|\psi _{M}^{\pm }\rangle \). As a result, the partial HBSA may cause error in the polarization DOF with the probability of \(\frac{1}{4}\). For ensuring the correctness of the encoded ciphertext, Alice and Bob have to discard the encoded bits in the polarization DOF with the probability of \(\frac{1}{4}\). In this way, we can obtain the yield \(Y_{XP}^{1,1}\) and the error rate \(e_{XP}^{1,1}\) as

$$\begin{aligned} Y_{XP}^{1,1}= & {} \frac{3}{4}Y_{ZP}^{1,1}=(1-Y_{0})^{6}\left[ \frac{3}{4}t_{a}t_{b}\eta _{d}^{2}+\frac{9}{4}Y_{0}(t_{a}\eta _{d} \right. \nonumber \\{} & {} \left. +t_{b}\eta _{d}-2t_{a}t_{b}\eta _{d}^{2})+3Y_{0}^{2}(1-t_{a}\eta _{d})(1-t_{b}\eta _{d})\right] , \end{aligned}$$
(A9)
$$\begin{aligned} e_{XP}^{1,1}= & {} \frac{1}{2}-\frac{t_{a}t_{b}\eta _{d}^{2}(1-e_{dP})^{2}(1-Y_{0})^{6}}{2Y_{ZP}^{1,1}}. \end{aligned}$$
(A10)

On the other hand, in the momentum DOF, the partial HBSA can completely distinguish 4 Bell states, so that the adoption of the partial HBSA cannot case any error in the momentum DOF. In this way, we can deduce the yield \(Y_{Z(X)M}^{1,1}\) and the error rate \(e_{Z(X)M}^{1,1}\) in the momentum DOF as

$$\begin{aligned} Y_{ZM}^{1,1}= & {} Y_{XM}^{1,1}=Y_{ZP}^{1,1}, \nonumber \\ e_{ZM}^{1,1}= & {} e_{XM}^{1,1}=\frac{1}{2}-\frac{t_{a}t_{b} \eta _{d}^{2}(1-e_{dM})^{2}(1-Y_{0})^{6}}{2Y_{ZM}^{1,1}}. \end{aligned}$$
(A11)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, XL., Zhou, L., Zhong, W. et al. The Feasible Hyper-encoding Measurement-device-independent Deterministic Secure Quantum Communication Protocol. Quantum Inf Process 22, 325 (2023). https://doi.org/10.1007/s11128-023-04075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04075-1

Keywords