Abstract
In the field of artificial intelligence, pattern recognition is widely used to extract the abstract information in those high dimensional inputs of image, voice, or video. However, the interpretability of pattern recognition still remains understudied. The incomplete features extracted from system input still limit the recognition performance. To reject the disturbance of feature incompleteness, an error compensation is realized into the pattern recognition model under a quantum computation framework. The quantum-based recognition system fulfills the information transmission from input to output with the transformation of quantum states. Then, a compensation for the quantum state is used to reject those intermediate errors in the pattern recognition task. The experiment results in this paper indicate an effectiveness of the proposed method, with which the compensated Quantum Neural Network obtains a better performance. The proposed method brings a more robust recognition system under unknown disturbances.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The raw datasets used and analyzed during the current study are available in the open source MNIST repository http://yann.lecun.com/exdb/mnist/ and Cifar repository http://www.cs.toronto.edu/kriz/cifar.html.
References
Fan, P., Zhou, R.-G., Hu, W., Jing, N.: Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-018-2131-3
Arthur, D., Date, P.: Balanced K-means clustering on an adiabatic quantum computer. Quantum Inf. Process. (2021). https://doi.org/10.1007/s11128-021-03240-8
Li, J., Lin, S., Yu, K., Guo, G.: Quantum K-nearest neighbor classification algorithm based on hamming distance. Quantum Inf. Process. (2022). https://doi.org/10.1007/s11128-021-03361-0
Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015). https://doi.org/10.1080/00107514.2014.964942
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017). https://doi.org/10.1038/nature23474
Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020). https://doi.org/10.1038/s41467-020-14454-2
Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021). https://doi.org/10.1103/PhysRevX.11.041011
Alchieri, L., Badalotti, D., Bonardi, P., Bianco, S.: An introduction to quantum machine learning: from quantum logic to quantum deep learning. Quantum Mach. Intell. (2021). https://doi.org/10.1007/s42484-021-00056-8
Broughton, M., Verdon, G., Mccourt, T., Martinez, A.J., Mohseni, M.: TensorFlow quantum: a software framework for quantum machine learning. Arxiv (2020). https://doi.org/10.48550/arXiv.2003.02989
Alexandre, G.R., Soares, J.M., Pereira The, G.A.: Systematic review of 3D facial expression recognition methods. Pattern Recogn. 100, 107108 (2020). https://doi.org/10.1016/j.patcog.2019.107108
Yann, L., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013
Su, J.: Evaluation and transformation of unrealizable tasks for robot systems in representation space. IEEE Access 7, 81532–81541 (2019). https://doi.org/10.1109/ACCESS.2019.2923817
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791
Everingham, M., Winn, J.: The Pascal visual object classes challenge 2012 (VOC2012) development kit. Pattern analysis, statistical modelling and computational learning, Tech. Rep 8 (2011)
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision, pp. 740–755 (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Dong, Y.-Z., Guo, S.-M., Yang, K.: A face recognition algorithm based on compressive sensing and wavelets transform. In: International Computer Conference on Wavelet Active Media Technology and Information Processing, pp. 58–61 (2013). https://doi.org/10.1109/ICCWAMTIP.2013.6716600
Hu, X., Xu, W., Gan, Y., Su, J., Zhang, J.: Towards disturbance rejection in feature pyramid network. IEEE Trans. Artif. Intell. (2022). https://doi.org/10.1109/TAI.2022.3178062
Guo, B.-Z., Wu, Z.-H., Zhou, H.-C.: Active disturbance rejection control approach to output-feedback stabilization of A class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Autom. Control 61(6), 1613–1618 (2016). https://doi.org/10.1109/TAC.2015.247181
Zhao, Z.-L., Guo, B.-Z.: A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Autom. Control 63(1), 211–218 (2018). https://doi.org/10.1109/TAC.2017.272041
Zhao, Zhi-Liang., Guo, Bao-Zhu.: A nonlinear extended state observer based on fractional power functions. Automatica 81, 286–296 (2017). https://doi.org/10.1016/j.automatica.2017.03.00
Xu, W., Gan, Y., Su, J.: Bidirectional matrix feature pyramid network for object detection. In: International conference on pattern recognition (2020). https://doi.org/10.1109/ICPR48806.2021.9412229
Gan, Y., Xu, W., Su, J.: SFPN: semantic feature pyramid network for object detection. In: International conference on pattern recognition (2020). https://doi.org/10.1109/ICPR48806.2021.9412639
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245SI), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016). https://doi.org/10.1109/TPAMI.2016.2577031
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition, pp. 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017). https://doi.org/10.5555/3295222.3295349
Liu, C.J., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002). https://doi.org/10.1109/TIP.2002.999679
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Kamil, A., Al-Ali, H., Dean, D., Senadji, B., Naik, G.R.: Enhanced forensic speaker verification using a combination of DWT and MFCC feature warping in the presence of noise and reverberation conditions. IEEE Access 5(99), 15400–15413 (2017). https://doi.org/10.1109/ACCESS.2017.2728801
Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114, 140504 (2015). https://doi.org/10.1103/PhysRevLett.114.140504
Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)
Tsien, H.S.: Engineering Cybernetics. McGraw-Hill, New York (1954)
Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009). https://doi.org/10.1109/TIE.2008.2011621
Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Trans. Inf. Theory 48(6), 1518–1569 (2002). https://doi.org/10.1109/TIT.2002.1003838
Chen, X., Su, J., Zhang, J.: A two-teacher framework for knowledge distillation. In: International Symposium on Neural Networks, pp. 58–66 (2019). https://doi.org/10.1007/978-3-030-22796-8_7
Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)
Evans, E.N., Wang, Z., Frim, A.G., DeWeese, M.R., Theodorou, E.A.: Learning quantum-state feedback control with backpropagation-free stochastic optimization. Phys. Rev. A 106, 052405 (2022). https://doi.org/10.1103/PhysRevA.106.052405
Acknowledgements
This work was partially financially supported by the Shanghai Cross-disciplinary Research Fund under Grants JYJC202214, and the National Natural Science Foundation of China under Grants 61533012, 91748120, and 52041502.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hu, X., Su, J. & Zhang, J. Disturbance rejection in pattern recognition: a realization of quantum neural network. Quantum Inf Process 22, 409 (2023). https://doi.org/10.1007/s11128-023-04143-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-023-04143-6