Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Disturbance rejection in pattern recognition: a realization of quantum neural network

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the field of artificial intelligence, pattern recognition is widely used to extract the abstract information in those high dimensional inputs of image, voice, or video. However, the interpretability of pattern recognition still remains understudied. The incomplete features extracted from system input still limit the recognition performance. To reject the disturbance of feature incompleteness, an error compensation is realized into the pattern recognition model under a quantum computation framework. The quantum-based recognition system fulfills the information transmission from input to output with the transformation of quantum states. Then, a compensation for the quantum state is used to reject those intermediate errors in the pattern recognition task. The experiment results in this paper indicate an effectiveness of the proposed method, with which the compensated Quantum Neural Network obtains a better performance. The proposed method brings a more robust recognition system under unknown disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The raw datasets used and analyzed during the current study are available in the open source MNIST repository http://yann.lecun.com/exdb/mnist/ and Cifar repository http://www.cs.toronto.edu/kriz/cifar.html.

References

  1. Fan, P., Zhou, R.-G., Hu, W., Jing, N.: Quantum image edge extraction based on classical Sobel operator for NEQR. Quantum Inf. Process. (2019). https://doi.org/10.1007/s11128-018-2131-3

    Article  MATH  Google Scholar 

  2. Arthur, D., Date, P.: Balanced K-means clustering on an adiabatic quantum computer. Quantum Inf. Process. (2021). https://doi.org/10.1007/s11128-021-03240-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, J., Lin, S., Yu, K., Guo, G.: Quantum K-nearest neighbor classification algorithm based on hamming distance. Quantum Inf. Process. (2022). https://doi.org/10.1007/s11128-021-03361-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015). https://doi.org/10.1080/00107514.2014.964942

    Article  MATH  ADS  Google Scholar 

  5. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  ADS  Google Scholar 

  6. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 808 (2020). https://doi.org/10.1038/s41467-020-14454-2

    Article  ADS  Google Scholar 

  7. Pesah, A., Cerezo, M., Wang, S., Volkoff, T., Sornborger, A.T., Coles, P.J.: Absence of barren plateaus in quantum convolutional neural networks. Phys. Rev. X 11, 041011 (2021). https://doi.org/10.1103/PhysRevX.11.041011

    Article  Google Scholar 

  8. Alchieri, L., Badalotti, D., Bonardi, P., Bianco, S.: An introduction to quantum machine learning: from quantum logic to quantum deep learning. Quantum Mach. Intell. (2021). https://doi.org/10.1007/s42484-021-00056-8

    Article  Google Scholar 

  9. Broughton, M., Verdon, G., Mccourt, T., Martinez, A.J., Mohseni, M.: TensorFlow quantum: a software framework for quantum machine learning. Arxiv (2020). https://doi.org/10.48550/arXiv.2003.02989

    Article  Google Scholar 

  10. Alexandre, G.R., Soares, J.M., Pereira The, G.A.: Systematic review of 3D facial expression recognition methods. Pattern Recogn. 100, 107108 (2020). https://doi.org/10.1016/j.patcog.2019.107108

    Article  Google Scholar 

  11. Yann, L., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  ADS  Google Scholar 

  12. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018). https://doi.org/10.1016/j.patcog.2017.10.013

    Article  ADS  Google Scholar 

  13. Su, J.: Evaluation and transformation of unrealizable tasks for robot systems in representation space. IEEE Access 7, 81532–81541 (2019). https://doi.org/10.1109/ACCESS.2019.2923817

    Article  Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  15. Everingham, M., Winn, J.: The Pascal visual object classes challenge 2012 (VOC2012) development kit. Pattern analysis, statistical modelling and computational learning, Tech. Rep 8 (2011)

  16. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: European Conference on Computer Vision, pp. 740–755 (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  17. Dong, Y.-Z., Guo, S.-M., Yang, K.: A face recognition algorithm based on compressive sensing and wavelets transform. In: International Computer Conference on Wavelet Active Media Technology and Information Processing, pp. 58–61 (2013). https://doi.org/10.1109/ICCWAMTIP.2013.6716600

  18. Hu, X., Xu, W., Gan, Y., Su, J., Zhang, J.: Towards disturbance rejection in feature pyramid network. IEEE Trans. Artif. Intell. (2022). https://doi.org/10.1109/TAI.2022.3178062

    Article  Google Scholar 

  19. Guo, B.-Z., Wu, Z.-H., Zhou, H.-C.: Active disturbance rejection control approach to output-feedback stabilization of A class of uncertain nonlinear systems subject to stochastic disturbance. IEEE Trans. Autom. Control 61(6), 1613–1618 (2016). https://doi.org/10.1109/TAC.2015.247181

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhao, Z.-L., Guo, B.-Z.: A novel extended state observer for output tracking of MIMO systems with mismatched uncertainty. IEEE Trans. Autom. Control 63(1), 211–218 (2018). https://doi.org/10.1109/TAC.2017.272041

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhao, Zhi-Liang., Guo, Bao-Zhu.: A nonlinear extended state observer based on fractional power functions. Automatica 81, 286–296 (2017). https://doi.org/10.1016/j.automatica.2017.03.00

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, W., Gan, Y., Su, J.: Bidirectional matrix feature pyramid network for object detection. In: International conference on pattern recognition (2020). https://doi.org/10.1109/ICPR48806.2021.9412229

  23. Gan, Y., Xu, W., Su, J.: SFPN: semantic feature pyramid network for object detection. In: International conference on pattern recognition (2020). https://doi.org/10.1109/ICPR48806.2021.9412639

  24. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245SI), 255–260 (2015). https://doi.org/10.1126/science.aaa8415

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  26. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE conference on computer vision and pattern recognition, pp. 2117–2125 (2017). https://doi.org/10.1109/CVPR.2017.106

  27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: International Conference on Neural Information Processing Systems, pp. 6000–6010 (2017). https://doi.org/10.5555/3295222.3295349

  28. Liu, C.J., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002). https://doi.org/10.1109/TIP.2002.999679

    Article  ADS  Google Scholar 

  29. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  30. Kamil, A., Al-Ali, H., Dean, D., Senadji, B., Naik, G.R.: Enhanced forensic speaker verification using a combination of DWT and MFCC feature warping in the presence of noise and reverberation conditions. IEEE Access 5(99), 15400–15413 (2017). https://doi.org/10.1109/ACCESS.2017.2728801

    Article  Google Scholar 

  31. Li, Z., Liu, X., Xu, N., Du, J.: Experimental realization of a quantum support vector machine. Phys. Rev. Lett. 114, 140504 (2015). https://doi.org/10.1103/PhysRevLett.114.140504

    Article  ADS  Google Scholar 

  32. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  MATH  ADS  Google Scholar 

  33. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  34. Tsien, H.S.: Engineering Cybernetics. McGraw-Hill, New York (1954)

    Google Scholar 

  35. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision (2016). https://doi.org/10.1007/978-3-319-46478-7_31

  36. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009). https://doi.org/10.1109/TIE.2008.2011621

    Article  Google Scholar 

  37. Ephraim, Y., Merhav, N.: Hidden Markov processes. IEEE Trans. Inf. Theory 48(6), 1518–1569 (2002). https://doi.org/10.1109/TIT.2002.1003838

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, X., Su, J., Zhang, J.: A two-teacher framework for knowledge distillation. In: International Symposium on Neural Networks, pp. 58–66 (2019). https://doi.org/10.1007/978-3-030-22796-8_7

  39. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    Book  MATH  Google Scholar 

  40. Evans, E.N., Wang, Z., Frim, A.G., DeWeese, M.R., Theodorou, E.A.: Learning quantum-state feedback control with backpropagation-free stochastic optimization. Phys. Rev. A 106, 052405 (2022). https://doi.org/10.1103/PhysRevA.106.052405

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by the Shanghai Cross-disciplinary Research Fund under Grants JYJC202214, and the National Natural Science Foundation of China under Grants 61533012, 91748120, and 52041502.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Su, J. & Zhang, J. Disturbance rejection in pattern recognition: a realization of quantum neural network. Quantum Inf Process 22, 409 (2023). https://doi.org/10.1007/s11128-023-04143-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04143-6

Keywords