Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum-enhanced measurement scheme for quadrature phase-shift-keying coherent states under thermal noise

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum-enhanced receiver is an effective approach to discriminate weak coherent states with better performance. As a typical quantum-enhanced measurement scheme, Dolinar receivers theoretically approach the standard quantum limit by using real-time quantum feedback with optimal displacement and photon measurements. However, thermal noise can interfere with the results of photon measurement, ultimately leading to a degradation of performance. In this paper, we analyze the influence of thermal noise toward the detector and we build a more practical model of quantum-enhanced receiver with a replaced photon number resolving detector under thermal noise. The calculation model for decision strategy and displacement operator is optimized correspondingly by theoretical analysis to further improve the detection performance. This scheme provides an exact number of photons and accuracy calculation model of displacement operator and decision strategy, which reduce the degradation of performance caused by thermal noise. The simulation results show that the thermal noise causes a large interference with the quantum-enhanced measurements. The corrected scheme with the measurement model developed in this paper reduces the degradation of performance caused by thermal noise, and beats the standard quantum limit with the mean photon number of thermal noise less than 0.1. This work provides a meaningful step toward the performance enhancement of coherent state discrimination and enhances the capability for practical applications of quantum-enhanced measurement in coherent optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Find the latest articles, discoveries, and news in related topics.

References

  1. Burenkov, I.A., Jabir, M.V., Polyakov, S.V.: Practical quantum-enhanced receivers for classical communication. AVS Quant. Sci. 3, 025301 (2021). https://doi.org/10.1116/5.0036959

    Article  ADS  Google Scholar 

  2. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969). https://doi.org/10.1007/BF01007479

    Article  ADS  MathSciNet  Google Scholar 

  3. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995). https://doi.org/10.1103/PhysRevA.51.1863

    Article  ADS  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MathSciNet  Google Scholar 

  5. Cheng Jian, Feng Jin-Xia, Li Yuan-Ji, Zhang Kuan-Shou, 1. State key laboratory of quantum optics and quantum optics devices, institute of opto-electronics, Shanxi University, Taiyuan 030006, China;, 2. Collaborative Innovation center of extreme optics, Shanxi University, Taiyuan 030006, China: Measurement of low-frequency signal based on quantum-enhanced fiber Mach-Zehnder interferometer. Acta Phys. Sin. 67, 244202 (2018). https://doi.org/10.7498/aps.67.20181335

  6. Li Shi-Yu, Tian Jian-Feng, Yang Chen, Zuo Guan-Hua, Zhang Yu-Chi, Zhang Tian-Cai, 1. Collaborative Innovation center of extreme optics, state key laboratory of quantum optics and quantum optics devices, institute of opto-electronics, Shanxi University, Taiyuan 030006, China;, 2. College of physics and electronic engineering, Shanxi University, Taiyuan 030006, China: effect of detection efficiency on phase sensitivity in quantum-enhanced Mach-Zehnder interferometer. Acta Phys. Sin. 67, 234202 (2018). https://doi.org/10.7498/aps.67.20181193

  7. Heng-Xin, S., Kui, L., Jun-Xiang, Z., Jiang-Rui, G.: State key laboratory of quantum optics and quantum optics devices, institute of opto-electronics, Shanxi University, Taiyuan 030006, China: quantum precision measurement based on squeezed light. Acta Phys. Sin. 64, 234210 (2015). https://doi.org/10.7498/aps.64.234210

    Article  Google Scholar 

  8. Bhadani, R., Djordjevic, I.B.: Constellation optimization for phase-shift keying coherent states with displacement receiver to maximize mutual information. IEEE Access. 8, 224409–224419 (2020). https://doi.org/10.1109/ACCESS.2020.3044086

    Article  Google Scholar 

  9. Izumi, S., Neergaard-Nielsen, J.S., Andersen, U.L.: Adaptive generalized measurement for unambiguous state discrimination of quaternary phase-shift-keying coherent states. PRX Quant. 2, 020305 (2021). https://doi.org/10.1103/PRXQuantum.2.020305

    Article  ADS  Google Scholar 

  10. Becerra, F.E., Fan, J., Baumgartner, G., Polyakov, S.V., Goldhar, J., Kosloski, J.T., Migdall, A.: M -ary-state phase-shift-keying discrimination below the homodyne limit. Phys. Rev. A 84, 062324 (2011). https://doi.org/10.1103/PhysRevA.84.062324

    Article  ADS  Google Scholar 

  11. Li, K., Zhu, B.: Optimal partitioned-interval detection binary quantum receiver with practical devices. In: 2013 IEEE photonics society summer topical meeting series. pp. 167–168 (2013)

  12. Vilnrotter, V.A.: Quantum receiver for distinguishing between binary coherent-state signals with partitioned-interval detection and constant-intensity local lasers. Interplanetary network progress report. 1–22 (2012)

  13. Vilnrotter, V., Rodemich, E.: A generalization of the near-optimum binary coherent state receiver concept (Corresp.). IEEE Transact. Inform. Theory 30, 446–450 (1984). https://doi.org/10.1109/tit.1984.1056853

    Article  Google Scholar 

  14. Izumi, S., Neergaard-Nielsen, J.S., Miki, S., Terai, H., Andersen, U.L.: Experimental demonstration of a quantum receiver beating the standard quantum limit at telecom wavelength. Phys. Rev. Appl. 13, 054015 (2020). https://doi.org/10.1103/PhysRevApplied.13.054015

    Article  ADS  Google Scholar 

  15. Fang Xu, Mohammad-Ali Khalighi, Salah Bourennane: Impact of different noise sources on the performance of PIN- and APD-based FSO receivers. In: Proceedings of the 11th International Conference on Telecommunications. pp. 211–218 (2011)

  16. Yuan, R., Zhao, M., Han, S., Cheng, J.: Kennedy receiver using threshold detection and optimized displacement under thermal noise. IEEE Commun. Lett. 24, 1313–1317 (2020). https://doi.org/10.1109/LCOMM.2020.2980537

    Article  Google Scholar 

  17. Sych, D., Leuchs, G.: Practical receiver for optimal discrimination of binary coherent signals. Phys. Rev. Lett. 117, 200501 (2016). https://doi.org/10.1103/PhysRevLett.117.200501

    Article  ADS  Google Scholar 

  18. Shcherbatenko, M.L., Elezov, M.S., Goltsman, G.N., Sych, D.V.: Sub-shot-noise-limited fiber-optic quantum receiver. Phys. Rev. A 101, 032306 (2020). https://doi.org/10.1103/PhysRevA.101.032306

    Article  ADS  Google Scholar 

  19. Cariolaro, G., Pierobon, G.: Performance of quantum data transmission systems in the presence of thermal noise. IEEE Trans. Commun. 58, 8 (2010)

    Article  Google Scholar 

  20. Izumi, S., Takeoka, M., Ema, K., Sasaki, M.: Quantum receivers with squeezing and photon-number-resolving detectors for M -ary coherent state discrimination. Phys. Rev. A 87, 042328 (2013). https://doi.org/10.1103/PhysRevA.87.042328

    Article  ADS  Google Scholar 

  21. Li, K., Zuo, Y., Zhu, B.: Suppressing the errors due to mode mismatch for M-ary PSK quantum receivers by photon-number-resolving detector. IEEE Photonics Technol. Lett. 25, 2182–2184 (2013). https://doi.org/10.1109/LPT.2013.2282155

    Article  ADS  Google Scholar 

  22. Becerra, F.E., Fan, J., Migdall, A.: Photon number resolution enables quantum receiver for realistic coherent optical communications. Nat. Photon. 9, 48–53 (2015). https://doi.org/10.1038/nphoton.2014.280

    Article  ADS  Google Scholar 

  23. Elezov, M.S., Shcherbatenko, M.L., Sych, D.V., Goltsman, G.N.: Development of control method for an optimal quantum receiver. J. Phys. Conf. Ser. 1695, 012126 (2020). https://doi.org/10.1088/1742-6596/1695/1/012126

    Article  Google Scholar 

  24. Vajente, G., Yang, L., Davenport, A., Fazio, M., Ananyeva, A., Zhang, L., Billingsley, G., Prasai, K., Markosyan, A., Bassiri, R., Fejer, M.M.: Low mechanical loss TiO2: GeO2 coatings for reduced thermal noise in gravitational wave interferometers. Phys. Rev. Lett. 127(7), 071101 (2021). https://doi.org/10.1103/PhysRevLett.127.071101

    Article  ADS  Google Scholar 

  25. Kimble, H.J., Lev, B.L., Ye, J.: Optical interferometers with reduced sensitivity to thermal noise. Phys. Rev. Lett. 101(26), 260602 (2008). https://doi.org/10.1103/PhysRevLett.101.260602

    Article  ADS  Google Scholar 

  26. DiMario, M.T., Becerra, F.E.: Channel-noise tracking for sub-shot-noise-limited receivers with neural networks. Phys. Rev. Res. 3(1), 013200 (2021). https://doi.org/10.1103/PhysRevResearch.3.013200

    Article  Google Scholar 

  27. Lohani, S., Ryan, T.: Glasser: Coherent optical communications enhanced by machine intelligence. Mach. Learn. Sci. Technol. 1, 035006 (2020). https://doi.org/10.1088/2632-2153/ab9c3d

    Article  Google Scholar 

  28. Bilkis, M., Rosati, M., Yepes, R.M., Calsamiglia, J.: Real-time calibration of coherent-state receivers: learning by trial and error. Phys. Rev. Res. 2(3), 033295 (2020). https://doi.org/10.1103/PhysRevResearch.2.033295

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Independent Innovation Science Fund of National University of Defense Technology (22-ZZCX-036), the National Natural Science Foundation of China (62101559), National key basic research program of China (2021-JCJQ-JJ-0510), Scientific research program of National University of Defense Technology (ZK22-09), the Innovative Key Projects Promotion in Information and Communication College (No. YJKT-RC-2113) and the National University of Defense Technology under Grant No. 19-QNCXJ.

Author information

Authors and Affiliations

Authors

Contributions

Chang Guo. and Tianyi Wu wrote the main manuscript text. Jungang Yang and Chen Dong directed the research. Kezheng Dang and Yang Ran improved the paper. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jungang Yang or Chen Dong.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Wu, T., Dang, K. et al. Quantum-enhanced measurement scheme for quadrature phase-shift-keying coherent states under thermal noise. Quantum Inf Process 23, 231 (2024). https://doi.org/10.1007/s11128-024-04449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04449-z

Keywords