Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A differential game formulation of a controlled network

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper considers multiclass queueing network systems with fixed routing. With the service control as one player and the arrival and service rates as the other, the problem of network regulation can be formulated as a differential game. Representations of the value function are developed by studying the geometric properties of the associated Hamiltonians and are expressed in terms of related simpler halfspace problems. Also, a method of constructing the optimal feedback controls through the representation and the projected Isaacs equations is provided. The controls so constructed give both a guaranteed level of performance and robust stability over a range of rate perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhauser, Boston (1997)

    Book  Google Scholar 

  2. Basar, T., Bernhard, P.: H -Optimal Control and Related Minmax Design Problems. Birkhauser, Boston (1991)

    Google Scholar 

  3. Budhiraja, A., Dupuis, P.: Simple necessary and sufficient conditions for the stability of constrained processes. SIAM J. Appl. Math. 59, 1686–1700 (1999)

    Article  Google Scholar 

  4. Commault, C., Marchand, N. (eds.): Positive systems. In: Proceedings of the Second Multidisciplinary International Symposium on Positive Systems: Theory and Applications (POSTA 06) Grenoble, France, Aug. 30–Sept. 1, 2006. Lecture Notes in Control and Information Sciences, vol. 341 (2006)

  5. Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Probab. 5, 49–77 (1995)

    Article  Google Scholar 

  6. Dai, J.G., Weiss, G.: A fluid heuristic for minimizing makespan in job shops. Oper. Res. 50, 692–707 (2002)

    Article  Google Scholar 

  7. Day, M.V.: Networks with boundary-influenced robust controls: two examples. Virginia Tech., preprint

  8. Dupuis, P.: Explicit solution to a robust queueing control problem. SIAM J. Control Optim. 42, 1854–1875 (2003)

    Article  Google Scholar 

  9. Dupuis, P., Ishii, H.: On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stochastics 35, 31–62 (1991)

    Google Scholar 

  10. Dupuis, P., Ramanan, K.: Convex duality and the Skorokhod problem, I and II. Probab. Theory Relat. Fields 115, 153–236 (1999)

    Article  Google Scholar 

  11. Dupuis, P., James, M.R., Petersen, I.: Robust properties of risk-sensitive control. Math. Control Signals Syst. 13, 318–332 (2000)

    Article  Google Scholar 

  12. Elliott, R.J., Kalton, N.J.: The Existence of Value in Differential Games. Memoirs of the Am. Math. Society, vol. 126. AMS, Providence (1972)

    Google Scholar 

  13. Farina, L., Rinaldi, S.: Positive Linear Systems: Theory and Applications, Pure and Applied Mathematics. A Wiley-Interscience Series of Tex, Monographs and Tracts. Wiley, New York (2000)

    Google Scholar 

  14. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solution. Springer, Berlin (1992)

    Google Scholar 

  15. Glover, K., Doyle, J.C.: State-space formulae for all stabilizing controllers that satisfy an H -norm bound and relations to risk-sensitivity. Syst. Control Lett. 11, 167–172 (1988)

    Article  Google Scholar 

  16. McEneaney, W.M.: A uniqueness result for the Isaacs equation corresponding to nonlinear H control. Math. Control Signals Syst. 11, 303–334 (1998)

    Article  Google Scholar 

  17. Meyn, S.P.: Transience of multiclass queueing networks via fluid limit model. Ann. Appl. Math. 5, 946–957 (1995)

    Google Scholar 

  18. Meyn, S.P.: Sequencing and routing in multiclass queueing networks, Part I: Feedback regulation. SIAM J. Control Optim. 40, 741–776 (2001)

    Article  Google Scholar 

  19. Meyn, S.P.: Sequencing and routing in multiclass queueing networks, Part II: Workload relaxations. SIAM J. Control Optim. 42, 178–217 (2003)

    Article  Google Scholar 

  20. Pai, H.M.: A robust formulation of a multi class queueing network control problem. Ph.D dissertation, Brown University (2004)

  21. Rockafellar, R.T.: Convex Analysis. Princeton Univ. Press, Princeton (1997)

    Google Scholar 

  22. Soravia, P.: ℋ control of nonlinear systems: differential games and viscosity solutions. SIAM J. Control Optim. 34, 1071–1097 (1996)

    Article  Google Scholar 

  23. Tassiulas, L., Ephremides, A.: Jointly optimal routing and scheduling in packet ratio networks. IEEE Trans. Inf. Theory 38, 165–168 (1992)

    Article  Google Scholar 

  24. Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughtput in multihop radio networks. IEEE Trans. Autom. Control 37, 1936–1948 (1992)

    Article  Google Scholar 

  25. Weiss, G.: On optimal draining of re-entrant fluid lines. In: Kelly, F.P., Williams, R.J. (eds.) Stochastic Networks, pp. 91–103. Springer, Berlin (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ming Pai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pai, HM. A differential game formulation of a controlled network. Queueing Syst 64, 325–358 (2010). https://doi.org/10.1007/s11134-009-9161-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-009-9161-6

Keywords

Mathematics Subject Classification (2000)