Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Variational problem in the non-negative orthant of ℝ3: reflective faces and boundary influence cones

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper we consider the variational problem in the non-negative orthant of ℝ3. The solution of this problem gives the large deviation rate function for the stationary distribution of an SRBM (Semimartingal Reflecting Brownian Motion). Avram, Dai and Hasenbein (Queueing Syst. 37, 259–289, 2001) provided an explicit solution of this problem in the non-negative quadrant. Building on this work, we characterize reflective faces of the non-negative orthant of ℝd, we construct boundary influence cones and we provide an explicit solution of several constrained variational problems in ℝ3. Moreover, we give conditions under which certain spiraling paths to a point on an axis have a cost which is strictly less than the cost of every direct path and path with two pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avram, F., Dai, J.G., Hasenbein, J.J.: Explicit solutions for variational problems in the quadrant. Queueing Syst. 37, 259–289 (2001)

    Article  Google Scholar 

  2. Bazaraa, M., Sherali, H., Shetty, C.: Non-Linear Programming, Theory and Algorithms, 3rd edn. John Wiley & Sons, New York (2006)

    Book  Google Scholar 

  3. Bernard, A., El Kharroubi, A.: Régulations deterministes et stochastiques dans le premier orthant de ℝn. Stoch. Stoch. Rep. 34, 149–167 (1991)

    Google Scholar 

  4. Bramson, M., Dai, J.G., Harrison, J.M.: Positive recurrence of reflecting Brownian motion in three dimensions. Ann. Appl. Probab. 20, 753–783 (2010)

    Article  Google Scholar 

  5. Budhiraja, A., Dupuis, P.: Simple necessary and sufficient conditions for the stability of constrained processes. SIAM J. Appl. Math. 59(5), 1686–1700 (1999)

    Article  Google Scholar 

  6. Dupuis, P., Williams, R.J.: Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22, 680–702 (1994)

    Article  Google Scholar 

  7. Dupuis, P., Ramanan, K.: A time-reversed representation for the tail probabilities of stationary reflected Brownian motion. Stoch. Process. Appl. 98(2), 253–288 (2002)

    Article  Google Scholar 

  8. El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: Sur la récurrence positive du mouvement Brownien réfléchi dans l’orthant positif de ℝn. Stoch. Stoch. Rep. 68, 229–253 (2000)

    Google Scholar 

  9. El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: On the stability of the linear Skorokhod problem in an orthant. Math. Methods Oper. Res. 56, 243–258 (2002)

    Article  Google Scholar 

  10. Harrison, J.M., Hasenbein, J.J.: Reflected Brownian motion in the quadrant: tail behavior of the stationary distribution. Queueing Syst. 61, 113–138 (2009)

    Article  Google Scholar 

  11. Harrison, J.M., Williams, R.J.: Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22, 77–115 (1987)

    Article  Google Scholar 

  12. Hobson, D.G., Rogers, L.C.G.: Recurrence and transience of reflecting Brownian motion in the quadrant. Math. Proc. Camb. Philos. Soc. 113, 387–399 (1993)

    Article  Google Scholar 

  13. Majewski, K.: Large deviation of the steady-state distribution of reflected processes with applications to queueing systems. Queueing Syst. 29, 351–381 (1998)

    Article  Google Scholar 

  14. Murty, K.G.: On the number of solutions to the complementarity problem and spanning properties of complementary cones. Linear Algebra Appl. 5, 65–108 (1972)

    Article  Google Scholar 

  15. Samelson, H., Thrall, R.M., Besler, O.: A partition theorem for Euclidean n-space. Proc. Am. Math. Soc. 9, 805–807 (1958)

    Google Scholar 

  16. Taylor, L.M., Williams, R.J.: Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. Probab. Theory Relat. Fields 96, 283–317 (1993)

    Article  Google Scholar 

  17. Williams, R.J.: Semimartingale reflecting Brownian motions in the orthant. In: Kelly, F.P., Williams, R.J. (eds.) Stochastic Networks. The IMA Volumes in Mathematics and its Applications, vol. 71, pp. 125–137. Springer, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El Kharroubi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Kharroubi, A., Yaacoubi, A., Ben Tahar, A. et al. Variational problem in the non-negative orthant of ℝ3: reflective faces and boundary influence cones. Queueing Syst 70, 299–337 (2012). https://doi.org/10.1007/s11134-012-9278-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-012-9278-x

Keywords

Mathematics Subject Classification (2000)