Abstract
In this paper we consider the variational problem in the non-negative orthant of ℝ3. The solution of this problem gives the large deviation rate function for the stationary distribution of an SRBM (Semimartingal Reflecting Brownian Motion). Avram, Dai and Hasenbein (Queueing Syst. 37, 259–289, 2001) provided an explicit solution of this problem in the non-negative quadrant. Building on this work, we characterize reflective faces of the non-negative orthant of ℝd, we construct boundary influence cones and we provide an explicit solution of several constrained variational problems in ℝ3. Moreover, we give conditions under which certain spiraling paths to a point on an axis have a cost which is strictly less than the cost of every direct path and path with two pieces.
Similar content being viewed by others
References
Avram, F., Dai, J.G., Hasenbein, J.J.: Explicit solutions for variational problems in the quadrant. Queueing Syst. 37, 259–289 (2001)
Bazaraa, M., Sherali, H., Shetty, C.: Non-Linear Programming, Theory and Algorithms, 3rd edn. John Wiley & Sons, New York (2006)
Bernard, A., El Kharroubi, A.: Régulations deterministes et stochastiques dans le premier orthant de ℝn. Stoch. Stoch. Rep. 34, 149–167 (1991)
Bramson, M., Dai, J.G., Harrison, J.M.: Positive recurrence of reflecting Brownian motion in three dimensions. Ann. Appl. Probab. 20, 753–783 (2010)
Budhiraja, A., Dupuis, P.: Simple necessary and sufficient conditions for the stability of constrained processes. SIAM J. Appl. Math. 59(5), 1686–1700 (1999)
Dupuis, P., Williams, R.J.: Lyapunov functions for semimartingale reflecting Brownian motions. Ann. Probab. 22, 680–702 (1994)
Dupuis, P., Ramanan, K.: A time-reversed representation for the tail probabilities of stationary reflected Brownian motion. Stoch. Process. Appl. 98(2), 253–288 (2002)
El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: Sur la récurrence positive du mouvement Brownien réfléchi dans l’orthant positif de ℝn. Stoch. Stoch. Rep. 68, 229–253 (2000)
El Kharroubi, A., Ben Tahar, A., Yaacoubi, A.: On the stability of the linear Skorokhod problem in an orthant. Math. Methods Oper. Res. 56, 243–258 (2002)
Harrison, J.M., Hasenbein, J.J.: Reflected Brownian motion in the quadrant: tail behavior of the stationary distribution. Queueing Syst. 61, 113–138 (2009)
Harrison, J.M., Williams, R.J.: Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22, 77–115 (1987)
Hobson, D.G., Rogers, L.C.G.: Recurrence and transience of reflecting Brownian motion in the quadrant. Math. Proc. Camb. Philos. Soc. 113, 387–399 (1993)
Majewski, K.: Large deviation of the steady-state distribution of reflected processes with applications to queueing systems. Queueing Syst. 29, 351–381 (1998)
Murty, K.G.: On the number of solutions to the complementarity problem and spanning properties of complementary cones. Linear Algebra Appl. 5, 65–108 (1972)
Samelson, H., Thrall, R.M., Besler, O.: A partition theorem for Euclidean n-space. Proc. Am. Math. Soc. 9, 805–807 (1958)
Taylor, L.M., Williams, R.J.: Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant. Probab. Theory Relat. Fields 96, 283–317 (1993)
Williams, R.J.: Semimartingale reflecting Brownian motions in the orthant. In: Kelly, F.P., Williams, R.J. (eds.) Stochastic Networks. The IMA Volumes in Mathematics and its Applications, vol. 71, pp. 125–137. Springer, New York (1995)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
El Kharroubi, A., Yaacoubi, A., Ben Tahar, A. et al. Variational problem in the non-negative orthant of ℝ3: reflective faces and boundary influence cones. Queueing Syst 70, 299–337 (2012). https://doi.org/10.1007/s11134-012-9278-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11134-012-9278-x
Keywords
- Reflected Brownian motion
- Positive recurrence
- Skorokhod problems
- Variational problems
- Queuing networks
- Large deviations