Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Markov-modulated M/G/1-type queue in heavy traffic and its application to time-sharing disciplines

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

This paper deals with a single-server queue with modulated arrivals, service requirements and service capacity. In our first result, we derive the mean of the total workload assuming generally distributed service requirements and any service discipline which does not depend on the modulating environment. We then show that the workload is exponentially distributed under heavy-traffic scaling. In our second result, we focus on the discriminatory processor sharing (DPS) discipline. Assuming exponential, class-dependent service requirements, we show that the joint distribution of the queue lengths of different customer classes under DPS undergoes a state-space collapse when subject to heavy-traffic scaling. That is, the limiting distribution of the queue-length vector is shown to be exponential, times a deterministic vector. The distribution of the scaled workload, as derived for general service disciplines, is a key quantity in the proof of the state-space collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, E., Jimenez, T., Kofman, D.: DPS queues with stationary ergodic service times and the performance of TCP in overload. Proc. IEEE Infocom 2, 975–983 (2004)

    Google Scholar 

  2. Altman, E., Avrachenkov, K., Ayesta, U.: A survey on discriminatory processor sharing. Queueing Syst. 53, 53–63 (2006)

    Article  Google Scholar 

  3. Asmussen, S.: The heavy traffic limit of a class of Markovian queueing models. Oper. Res. Lett. 6(6), 301–306 (1987)

    Article  Google Scholar 

  4. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    Google Scholar 

  5. Avrachenkov, K., Ayesta, U., Brown, P., Núñez-Queija, R.: Discriminatory processor sharing revisited. Proc. IEEE Infocom 2, 784–795 (2005)

    Google Scholar 

  6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    Book  Google Scholar 

  7. Blom, J., Kella, O., Mandjes, M., Thorsdottir, H.: Markov-modulated infinite-server queues with general service times. Queueing Syst. 76(4), 403–424 (2014)

    Article  Google Scholar 

  8. Borst, S.C., van Ooteghem, D., Zwart, A.: Tail asymptotics for discriminatory processor sharing queues with heavy-tailed service requirements. Perform. Eval. 61, 281–298 (2005)

    Article  Google Scholar 

  9. Borst, S.C., Núñez-Queija, R., Zwart, A.: Sojourn time asymptotics in processor sharing queues. Queueing Syst. 53, 31–51 (2006)

    Article  Google Scholar 

  10. Boxma, O.J., Kurkova, I.A.: The M/G/1 queue with two service speeds. Adv. Appl. Probab. 33(2), 520–540 (2001)

    Article  Google Scholar 

  11. Budhiraja, A., Ghosh, A., Liu, X.: Scheduling control for Markov-modulated single-server multiclass queueing systems in heavy traffic. Queueing Syst. 78(1), 57–97 (2014)

    Article  Google Scholar 

  12. Dimitrov, M.: Single-server queueing system with Markov-modulated arrivals and service times. Pliska Stud. Math. Bulg. 20, 53–62 (2011)

    Google Scholar 

  13. Dorsman, J.L., Vlasiou, M., Zwart, B.: Heavy-traffic asymptotics for networks of parallel queues with Markov-modulated service speeds. Queueing Syst. 79(3–4), 293–319 (2015)

    Article  Google Scholar 

  14. Grishechkin, S.: On a relationship between processor sharing queues and Crump–Mode–Jagers branching processes. Adv. Appl. Probab. 24(3), 653–698 (1992)

    Article  Google Scholar 

  15. Falin, G., Falin, A.: Heavy traffic analysis of M/G/1 type queueing systems with Markov-modulated arrivals. Soc. Estad. Invest. Oper. 7(2), 279–291 (1999)

    Google Scholar 

  16. Fayolle, G., Mitrani, I., Iasnogorodski, R.: Sharing a processor among many job classes. J. ACM 27(3), 519–532 (1980)

    Article  Google Scholar 

  17. Fiems, D., Altman, E.: Markov-modulated stochastic recursive equations with applications to delay-tolerant networks. Perform. Eval. 70(11), 965–980 (2013)

    Article  Google Scholar 

  18. Hassin, R., Haviv, M.: To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems. Kluwer Academic Publishers, Boston (2003)

    Book  Google Scholar 

  19. Izagirre, A., Ayesta, U., Verloop, I.M.: Interpolation approximations for the steady-state distribution in multi-class resource-sharing systems. Perform. Eval. 91, 56–79 (2015)

    Article  Google Scholar 

  20. Izagirre, A., Ayesta, U., Verloop, I.M.: Heavy-traffic analysis of a multi-class queue with relative priorities. Probab. Eng. Inform. Sc. 29(2), 153–180 (2015)

    Article  Google Scholar 

  21. Katsuda, T.: State-space collapse in stationarity and its application to a multiclass single-server queue in heavy traffic. Queueing Syst. 65(3), 237–273 (2010)

    Article  Google Scholar 

  22. Kim, B., Kim, J.: A single server queue with Markov modulated service rates and impatient customers. Perform. Eval. 83–84, 1–15 (2015)

    Google Scholar 

  23. Kingman, J.F.C.: The single server queue in heavy traffic. Proc. Camb. Philos. Soc. 57(4), 902–904 (1961)

    Article  Google Scholar 

  24. Kleinrock, L.: Time-shared systems: a theoretical treatment. J. ACM 14(2), 242–261 (1967)

    Article  Google Scholar 

  25. Mahabhashyam, S., Gautam, N.: On queues with Markov modulated service rates. Queueing Syst. 51(1–2), 89–113 (2005)

    Article  Google Scholar 

  26. Neuts, M.F.: Matrix-geometric Solutions in Stochastic Models, an Algorithmic Approach. The Johns Hopkins University Press, Baltimore (1981)

    Google Scholar 

  27. Núñez-Queija, R.: Processor-sharing models for integrated-services networks. PhD thesis, Eindhoven University of Technology (2000)

  28. Purdue, P.: The M/M/1 queue in a Markovian environment. Oper. Res. 22, 562–569 (1974)

    Article  Google Scholar 

  29. Rege, K.M., Sengupta, B.: Queue-length distribution for the discriminatory processor-sharing queue. Oper. Res. 44(4), 653–657 (1996)

    Article  Google Scholar 

  30. Regterschot, G.J.K., de Smit, J.H.A.: The queue M/G/1 with Markov-modulated arrivals and service. Math. Oper. Res. 11, 465–483 (1986)

    Article  Google Scholar 

  31. Takine, T.: Single-server queues with Markov-modulated arrivals and service speed. Queueing Syst. 49, 7–22 (2005)

    Article  Google Scholar 

  32. Verloop, I.M., Ayesta, U., Núñez-Queija, R.: Heavy-traffic analysis of a multiple-phase network with discriminatory processor sharing. Oper. Res. 59(3), 648–660 (2011)

    Article  Google Scholar 

  33. Wu, Y., Bui, L., Johari, R.: Heavy traffic approximation of equilibria in resource sharing games. IEEE J. Sel. Areas Commun. 30(11), 2200–2209 (2012)

    Article  Google Scholar 

  34. Yechiali, U., Naor, P.: Queueing problems with heterogeneous arrival and service. Oper. Res. 19, 722–734 (1971)

    Article  Google Scholar 

  35. Zorine, A.V.: On ergodicity conditions in a polling model with Markov modulated input and state-dependent routing. Queueing Syst. 76, 223–241 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Urtzi Ayesta, Joke Blom and Michel Mandjes for helpful discussions. This research was partially supported by the SMI Program of INP Toulouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Thorsdottir.

Appendix: Proof of Theorem 3.3

Appendix: Proof of Theorem 3.3

The proof Theorem 3.3 is based on Theorem 4 in [12], which can be adapted to our model as follows:

We start with notation and some preliminaries. Let \(\Lambda = \text {diag}(\lambda _1,\ldots ,\lambda _D)\), \(\bar{H}(s) = \text {diag}(1 - h_1(s),\ldots ,1 - h_D(s))\), \(C= \text {diag}(c_1,\ldots ,c_D)\) and \(\varvec{p}_0 = (p_{0,1},\ldots ,p_{0,D})\). Furthermore \(\bar{H}_1\) and \(\bar{H}_2\) are the diagonal matrices corresponding to the moments \(h_{d1}\) and \(h_{d2}\), respectively, for \(d=1,\ldots ,D\). Recall Eq. (3), \([Q\cdot \varvec{a}]_d = c_d - \lambda _d h_{d1} -c_\infty (1-\rho _\infty )\). We will now construct a partial inverse of Q to make it easier to find a vector \(\varvec{a}\) which solves this equation. Let \(Q_1\) and R be matrices such that

$$\begin{aligned} Q_1= \begin{pmatrix} q_{22} &{} q_{23} &{} \cdots &{} q_{2D} \\ \vdots &{} &{} &{}\\ q_{D2} &{} q_{D3} &{} \cdots &{} q_{DD} \end{pmatrix}, \quad R= \begin{pmatrix} 0 &{} 0 &{} \cdots &{} 0 \\ 0 &{}&{}&{}\\ \vdots &{} Q_1^{-1} &{} \\ 0 &{} &{}&{} \end{pmatrix}. \end{aligned}$$

Then \(\det Q_1 \ne 0\) and, due to Q being a generator (for more details, see [12]), we have

$$\begin{aligned} QR = \begin{pmatrix} 0 &{} \frac{-\pi _2}{\pi _1} &{} \frac{-\pi _3}{\pi _1} &{} \cdots &{} \frac{-\pi _D}{\pi _1} \\ 0 &{} 1 &{} 0 &{} \cdots &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 &{} \cdots \\ \vdots &{} \vdots &{} \vdots &{} \ddots &{} \ddots \\ 0 &{} 0 &{} \cdots &{} \cdots &{} 1 \end{pmatrix}. \end{aligned}$$

It follows that for any vector \(\varvec{x}\), it holds that

$$\begin{aligned} \varvec{x}QR = \varvec{x} - \frac{x_1}{\pi _1} \varvec{\pi }. \end{aligned}$$
(33)

Then it can be verified with straightforward calculations that

$$\begin{aligned} \varvec{a}&= (a_1,\ldots ,a_D) = R(c_1 - \lambda _1 h_{11} - c_\infty (1-\rho _\infty ),\ldots ,c_D - \lambda _D h_{D1} - c_\infty (1-\rho _\infty ))^T \nonumber \\&= R[C - \Lambda \bar{H}_1]\varvec{e} - c_\infty (1-\rho _\infty )R\varvec{e} \nonumber \\&= R[C - \Lambda \bar{H}_1]\varvec{e} - \varvec{r} \end{aligned}$$
(34)

is a possible solution vector, with \(\varvec{r} := c_\infty (1-\rho _\infty )R\varvec{e}\).

Define the vector \(\varvec{\varphi } = (\varphi _1(s),\ldots ,\varphi _D(s))\) and write Eq. (5) in matrix-vector terms:

$$\begin{aligned} \varvec{\varphi }(s) Q = \varvec{\varphi }(s)[\Lambda \bar{H}(s) - sC] + s \varvec{p}_0 C. \end{aligned}$$
(35)

Observe that, according to Eq. (7),

$$\begin{aligned} \varvec{p}_0 C\varvec{e} = c_\infty (1-\rho _\infty ). \end{aligned}$$

Now multiply from the right both sides of the new vector-matrix equation, Eq. (35), with a D-dimensional vector of 1’s, \(\varvec{e}\), to obtain

$$\begin{aligned} \varvec{\varphi }(s)[\Lambda \bar{H}(s) - sC]\varvec{e} + s c_\infty (1-\rho _\infty ) = 0. \end{aligned}$$
(36)

Multiply from the right both sides of Eq. (35) with the matrix R to get

$$\begin{aligned} \varvec{\varphi }(s)QR = \varvec{\varphi }(s)[\Lambda \bar{H}(s) - sC]R + s \varvec{p}_0 C R. \end{aligned}$$

Rewrite this equation by using the property of Eq. (33) to obtain

$$\begin{aligned} \varvec{\varphi }(s) = \frac{\varphi _1(s)}{\pi _1} \varvec{\pi } + \varvec{\varphi }(s)[\Lambda \bar{H}(s) - sC]R + s \varvec{p}_0 C R. \end{aligned}$$
(37)

Iterate Eq. (37) with itself by inserting \(\varvec{\varphi }(s)\) into the right-hand side of the equation to obtain, after some algebraic transformations,

$$\begin{aligned} \varvec{\varphi }(s) = \frac{\varphi _1(s)}{\pi _1} \varvec{\pi }[I + G(s)R] + \varvec{y}(s), \end{aligned}$$
(38)

with \(G(s) := \Lambda \bar{H}(s) - sC\) and

$$\begin{aligned} \varvec{y}(s) := \varvec{\varphi }(s)[G(s)R]^2 + s\varvec{p}_0 CR[G(s)R + I]. \end{aligned}$$
(39)

Substitute Eq. (38) into Eq. (36) to obtain an expression for \(\varphi _1(s)\):

$$\begin{aligned} 0&= \left[ \frac{\varphi _1(s)}{\pi _1} \varvec{\pi }[I + G(s)R] + \varvec{y}(s)\right] \cdot G(s)\varvec{e} + s c_\infty (1-\rho _\infty ) \nonumber \\&= \frac{\varphi _1(s)}{\pi _1}\left[ \varvec{\pi } G(s)\varvec{e} + \varvec{\pi }G(s)RG(s)\varvec{e} \right] + \varvec{y}(s)G(s)\varvec{e} + s c_\infty (1-\rho _\infty ) \nonumber \\&= \frac{\varphi _1(s)}{\pi _1}\left[ B_2(s) + B_3(s)\right] + B_1(s), \end{aligned}$$
(40)

with \(B_1(s) = \varvec{y}(s)G(s)\varvec{e} + s c_\infty (1-\rho _\infty )\), \(B_2(s) = \varvec{\pi }G(s)\varvec{e}\) and \(B_3(s) = \varvec{\pi }G(s)RG(s)\varvec{e}\).

The next step is to insert the scaling \(s \mapsto s/N\) for each term. Recall that using the heavy-traffic parametrization introduced in Sect. 2, we have \((1-\rho _\infty )=1/N\). Now observe that, as \(N\rightarrow \infty \),

$$\begin{aligned} \frac{\bar{H}(s/N)}{s/N} \rightarrow \bar{H}_1, \quad \frac{\bar{H}_1s/N - \bar{H}\left( s/N\right) }{(s/N)^2} \rightarrow \frac{\bar{H}_2}{2}. \end{aligned}$$

Therefore the limit

$$\begin{aligned} \frac{G(s/N)}{s/N} \rightarrow \Lambda \bar{H}_1 - C, \end{aligned}$$

is a constant, and since \(|\varvec{\varphi }(s/N)| \le 1\) and \(\varvec{p}^{(N)}_0 \rightarrow 0\) (see Eq. (7)), we have

$$\begin{aligned} \frac{\varvec{y}(s/N)}{s/N}&= \varvec{\varphi }(s/N)\frac{[G(s/N)R]^2}{s/N} + \varvec{p}^{(N)}_0 CR[G(s/N)R + I] \\&= \varvec{\varphi }(s/N)\left( \frac{s}{N}\right) \left[ \frac{G(s/N)}{s/N}R\right] ^2 + \varvec{p}^{(N)}_0 CR[G(s/N)R + I] \\&\rightarrow 0, \end{aligned}$$

as \(N\rightarrow \infty \). Combining the above we obtain

$$\begin{aligned} B_1(s/N)&= \varvec{y}(s/N)G(s/N)\varvec{e} + sc_\infty (1-\rho _\infty )/N \\&= sc_\infty (1 - \rho _\infty )/N + o(N^{-2}) = sc_\infty /N^2 + o(N^{-2}). \end{aligned}$$

Then

$$\begin{aligned} B_2(s/N)&= \varvec{\pi } \left[ \Lambda \bar{H}\left( s/N\right) - sC/N \right] \varvec{e} \\&= \varvec{\pi } \Lambda \left[ \bar{H}\left( s/N\right) - \bar{H}_1s/N\right] \varvec{e} + \varvec{\pi }\left[ \Lambda \bar{H}_1s/N - sC/N \right] \varvec{e} \\&= \varvec{\pi } \Lambda \frac{\bar{H}\left( s/N\right) - \bar{H}_1s/N}{(s/N)^2}(s/N)^2\varvec{e} - sc_\infty (1 - \rho _\infty )/N\\&= -\varvec{\pi } \Lambda \frac{\bar{H}_2}{2}(s/N)^2\varvec{e} + o(N^{-2}) - sc_\infty /N^2\\&= -(s/N)^2\sum _{d=1}^D \pi _d\lambda _d h_{d2}/2 - sc_\infty /N^2 + o(N^{-2}), \end{aligned}$$

since \(\varvec{\pi } \Lambda \bar{H}_1 \varvec{e} = \sum _{d=1}^D \pi _d\lambda _d h_{d1} = \rho _\infty c_\infty \). Furthermore,

$$\begin{aligned} B_3(s/N)&= \varvec{\pi } \left[ \Lambda \bar{H}\left( s/N\right) - C s/N \right] R \left[ \Lambda \bar{H}\left( s/N\right) - Cs/N \right] \varvec{e} \\&= \varvec{\pi } (s/N)^2\left[ \Lambda \frac{\bar{H}\left( s/N\right) }{(s/N)} - C\right] R \cdot \left[ \Lambda \frac{\bar{H}\left( s/N\right) }{(s/N)} - C \right] \varvec{e} \\&= \varvec{\pi } (s/N)^2 \left[ \Lambda \bar{H}_1 - C \right] R \left[ \Lambda \bar{H}_1 - C\right] \varvec{e} + o(N^{-2}) \\&= -\varvec{\pi } (s/N)^2 \left[ \Lambda \bar{H}_1 - C \right] (\varvec{a} + \varvec{r}) + o(N^{-2}) \\&= -\sum _d \pi _d\left[ (a_d+r_d) (\lambda _d h_{d1} - c_d)\right] (s/N)^2 + o(N^{-2}), \end{aligned}$$

due to \(R \left[ C - \Lambda \bar{H}_1\right] \varvec{e} = \varvec{a} + \varvec{r}\); see Eq. (34). Under the heavy-traffic scaling,

$$\begin{aligned} \varvec{r} = c_\infty (1-\rho _\infty )R\varvec{e} = c_\infty N^{-1}R\varvec{e} \end{aligned}$$

is an o(1) term. Observe that

$$\begin{aligned}&-(B_2(s/N) + B_3(s/N)) \\&\quad = (s/N)^2 \sum _{d=1}^D \pi _d[\lambda _d h_{d2}/2 + (a_d + o(1))(\lambda _dh_{d1} - c_d)] + sc_\infty /N^2 + o(N^{-2}). \end{aligned}$$

Rearranging Eq. (40) yields

$$\begin{aligned} \varphi _1(s/N)&= \pi _1\frac{B_1(s/N)}{-(B_2(s/N) + B_3(s/N))} \\&= \pi _1 \frac{c_\infty s/N^2 + o(N^{-2})}{(s/N)^2 \sum _{d=1}^D \pi _d[\lambda _d h_{d2}/2 + a_d(\lambda _dh_{d1} - c_d)] + c_\infty s/N^2 + o(N^{-2}) } \\&= \pi _1 \frac{1 + o(1)}{1 + c_\infty ^{-1} \sum _d \pi _d \left[ \lambda _d h_{d2}/2 + a_d (\lambda _d h_{d1} - c_d)\right] s + o(1)}. \end{aligned}$$

Let M be the desired mean stated in Theorem 3.3, that is,

$$\begin{aligned} M := c_\infty ^{-1}\sum _d \pi _d\left[ \hat{\lambda }_d h_{d2}/2 + a_d (\hat{\lambda }_d h_{d1} - c_d)\right] . \end{aligned}$$

Then, taking the heavy-traffic limit,

$$\begin{aligned} \lim _{N\rightarrow \infty } \varvec{\varphi }(s/N) = \lim _{N\rightarrow \infty } \frac{\varphi _1(s/N)}{\pi _1}\varvec{\pi } = \frac{\varvec{\pi }}{1 + Ms}, \end{aligned}$$

i.e. the LST \(\varvec{\varphi }(s)\) converges in distribution to the LST of an exponentially distributed random variable with mean M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorsdottir, H., Verloop, I.M. Markov-modulated M/G/1-type queue in heavy traffic and its application to time-sharing disciplines. Queueing Syst 83, 29–55 (2016). https://doi.org/10.1007/s11134-016-9477-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-016-9477-y

Keywords

Mathematics Subject Classification