Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stationary analysis of the shortest queue problem

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A simple analytical solution is proposed for the stationary loss system of two parallel queues with finite capacity K, in which new customers join the shortest queue, or one of the two with equal probability if their lengths are equal. The arrival process is Poisson, service times at each queue have exponential distributions with the same parameter, and both queues have equal capacity. Using standard generating function arguments, a simple expression for the blocking probability is derived, which as far as we know is original. Using coupling arguments and explicit formulas, comparisons with related loss systems are then provided. Bounds are similarly obtained for the average total number of customers, with the stationary distribution explicitly determined on \(\{K, \ldots , 2K \}\), and elsewhere upper bounded. Furthermore, from the balance equations, all stationary probabilities are obtained as explicit combinations of their values at states (0, k) for \(0 \le k \le K\). These expressions extend to the infinite capacity and asymmetric cases, i.e., when the queues have different service rates. For the initial symmetric finite capacity model, the stationary probabilities of states (0, k) can be obtained recursively from the blocking probability. In the other cases, they are implicitly determined through a functional equation that characterizes their generating function. The whole approach shows that the stationary distribution of the infinite capacity symmetric process is the limit of the corresponding finite capacity distributions. Finally, application of the results for limited capacity to mean-field models for large bike-sharing networks with a local JSQ policy is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adan, I., van Houtum, G.J., van der Wal, J.: Upper and lower bounds for the waiting time in the symmetric shortest queue system. Ann. Oper. Res. 48(2), 197–217 (1994)

    Article  Google Scholar 

  2. Adan, I., Wessels, J., Zijm, W.H.M.: Analysis of the symmetric shortest queue problem. Commun. Stat. Stoch. Models 6(4), 691–713 (1990)

    Article  Google Scholar 

  3. Adan, I., Wessels, J., Zijm, W.H.M.: Analysis of the asymmetric shortest queue problem. Queueing Syst. 8(1), 1–58 (1991)

    Article  Google Scholar 

  4. Adan, I., Wessels, J.: Analysis of the asymmetric shortest queue problem with threshold jockeying. Stoch. Models 7(4), 615–627 (1991)

    Article  Google Scholar 

  5. Adan, I., Wessels, J., Zijm, W.H.M.: A compensation approach for two-dimensional Markov processes. Adv. Appl. Probab. 25(04), 783–817 (1993)

    Article  Google Scholar 

  6. Blanc, J.P.: The power-series algorithm applied to the shortest-queue model. Oper. Res. 40(1), 157–167 (1992)

    Article  Google Scholar 

  7. Cohen, J.W.: On the symmetrical shortest queue and the compensation approach. Dep. Oper. Res. Stat. Syst. Theory BS R 9602, 1–21 (1996)

    Google Scholar 

  8. Cohen, J.W.: Two-dimensional nearest-neighbour queueing models, a review and an example. In: Baccelli, F., Jean-Marie, A., Mitrani, I. (eds.) Quantitative Methods in Parallel Systems, pp. 141–152. Springer, Berlin (1995)

    Chapter  Google Scholar 

  9. Cohen, J.W.: Analysis of the asymmetrical shortest two-server queueing model. Int. J. Stoch. Anal. 11(2), 115–162 (1998)

    Article  Google Scholar 

  10. Conolly, B.W.: The autostrada queueing problem. J. Appl. Probab. 21(2), 394–403 (1984)

    Article  Google Scholar 

  11. Dester, P.S., Fricker, C.: Local balancing policies in bike-sharing systems. In preparation (2017)

  12. Dester, P.S., Fricker, C., Tibi, D.: Stationary analysis of the shortest queue problem. arXiv:1704.06442 (2017)

  13. Eschenfeldt, P., Gamarnik, D.: Join the shortest queue with many servers. The heavy traffic asymptotics. arXiv preprint arXiv:1502.00999 (2015)

  14. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrscheinlichkeitstheorie verwandte Geb. 47(3), 325–351 (1979)

    Article  Google Scholar 

  15. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random walks in the quarter plane: algebraic methods, boundary value problems, applications to queueing systems and analytic combinatorics, vol. 40. Springer International Publishing AG, Switzerland (2017)

  16. Flatto, L.: The longer queue model. Probab. Eng. Inf Sci. 3(04), 537–559 (1989)

    Article  Google Scholar 

  17. Flatto, L., McKean, H.P.: Two queues in parallel. Commun. Pure Appl. Math. 30(2), 255–263 (1977)

    Article  Google Scholar 

  18. Foley, R.D., McDonald, D.R.: Join the shortest queue: Stability and exact asymptotics. Ann. Appl. Probab. 11(3), 569–607 (2001)

  19. Fricker, C., Gast, N.: Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J. Trans. Logist. 1–31 (2014)

  20. Guillemin, F., Simonian, A.: Stationary analysis of the shortest queue first service policy. Queueing Syst. 77(4), 393–426 (2014)

    Article  Google Scholar 

  21. Haight, F.: Two queues in parallel. Biometrika 45(3–4), 401–410 (1958)

    Article  Google Scholar 

  22. Halfin, S.: The shortest queue problem. J. Appl. Probab. 22(4), 865–878 (1985)

    Article  Google Scholar 

  23. Hooghiemstra, G., Keane, M., van de Ree, S.: Power series for stationary distributions of coupled processor models. SIAM J. Appl. Math. 48(5), 1159–1166 (1988)

    Article  Google Scholar 

  24. Katehakis, M.N., Smit, L.C.: A successive lumping procedure for a class of Markov chains. Probab. Eng. Inf. Sci. 26(4), 483–508 (2012)

    Article  Google Scholar 

  25. Katehakis, M.N., Smit, L.C., Spieksma, F.M.: DES and RES processes and their explicit solutions. Probab. Eng. Inf. Sci. 29(2), 191–217 (2015)

    Article  Google Scholar 

  26. Kingman, J.: Two similar queues in parallel. Ann. Math. Stat. 32(4), 1314–1323 (1961)

    Article  Google Scholar 

  27. Knessl, C., Matkowsky, B., Schuss, Z., Tier, C.: Two parallel queues with dynamic routing. IEEE Trans. Commun. 34(12), 1170–1175 (1986)

    Article  Google Scholar 

  28. Knessl, C., Yao, H.: On the finite capacity shortest queue problem. Prog. Appl. Math. 2(1), 01–34 (2011)

    Article  Google Scholar 

  29. Kurkova, I.A., Suhov, Y.M.: Malyshev’s theory and JS-queues. Asymptotics of stationary probabilities. Ann. Appl. Probab. 13(4), 1313–1354 (2003)

    Article  Google Scholar 

  30. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling, vol. 5. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  31. Li, H., Miyazawa, M., Zhao, Y.Q.: Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model. Stoch. Models 23(3), 413–438 (2007)

    Article  Google Scholar 

  32. Mitzenmacher, M.: On the analysis of randomized load balancing schemes. In: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 292–301. ACM (1997)

  33. Puhalskii, A.A., Vladimirov, A.A.: A large deviation principle for join the shortest queue. Math. Oper. Res. 32(3), 700–710 (2007)

    Article  Google Scholar 

  34. Rao, B.M., Posner, M.J.M.: Algorithmic and approximation analyses of the shorter queue model. Naval Res. Logist. NRL 34(3), 381–398 (1987)

    Article  Google Scholar 

  35. Ridder, A., Schwartz, A.: Large deviations without principle: join the shortest queue. Math. Methods Oper. Res. 62(3), 467–483 (2005)

    Article  Google Scholar 

  36. Tarabia, A.M.K.: Analysis of two queues in parallel with jockeying and restricted capacities. Appl. Math. Model. 32(5), 802–810 (2008)

    Article  Google Scholar 

  37. Turner, S.R.E.: A join the shorter queue model in heavy traffic. J. Appl. Probab. 37(01), 212–223 (2000)

    Article  Google Scholar 

  38. Turner, S.R.E.: Large deviations for join the shorter queue. Fields Inst. Commun. 28, 95–108 (2000)

    Google Scholar 

  39. Van Houtum, G.J., Zijm, W.H.M., Adan, I.J.B.F., Wessels, J.: Bounds for performance characteristics: a systematic approach via cost structures. Stoch. Models 14(1–2), 205–224 (1998)

    Article  Google Scholar 

  40. Van Leeuwaarden, J.S.H., Squillante, M.S., Winands, E.M.M.: Quasi-birth-and-death processes, lattice path counting, and hypergeometric functions. J. Appl. Probab. 46(2), 507–520 (2009)

    Article  Google Scholar 

  41. Vvedenskaya, N., Dobrushin, R., Karpelevich, F.: Queueing system with selection of the shortest of two queues: an asymptotic approach. Probl. Peredachi Informatsii 32(1), 20–34 (1996)

    Google Scholar 

  42. Weber, R.R.: On the optimal assignment of customers to parallel servers. J. Appl. Probab. 15(02), 406–413 (1978)

    Article  Google Scholar 

  43. Whitt, W.: Deciding which queue to join: some counterexamples. Oper. Res. 34(1), 55–62 (1986)

    Article  Google Scholar 

  44. Winston, W.: Optimality of the shortest line discipline. J. Appl. Probab. 14(01), 181–189 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and referees for helpful discussions and, most particularly, to one referee for invaluable comments regarding the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Tibi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dester, P.S., Fricker, C. & Tibi, D. Stationary analysis of the shortest queue problem. Queueing Syst 87, 211–243 (2017). https://doi.org/10.1007/s11134-017-9556-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-017-9556-8

Keywords

Mathematics Subject Classification