Abstract
Motivated by concerns about the organizational and institutional conditions that foster research creativity in science, we focus on how creative research can be defined, operationalized, and empirically identified. A functional typology of research creativity is proposed encompassing theoretical, methodological and empirical developments in science. We then apply this typology through a process of creative research event identification in the fields of nanotechnology and human genetics in Europe and the United States, combining nominations made by several hundred experts with data on prize winners. Characteristics of creative research in the two respective fields are analyzed, and there is a discussion of broader insights offered by our approach.
Similar content being viewed by others
References
Aksnes, D. W. (2006), Citation rates and perceptions of scientific contribution, Journal of the American Society for Information Science and Technology, 57,2: 169–185.
Amabile, T. M. (1996), Creativity in Context: Update to the Social Psychology of Creativity, Boulder, CO: Westview Press.
Ashby, W. R. (1956), An Introduction to Cybernetics. London: Chapman and Hall. Internet (1999) http://pcp.vub.ac.be/books/IntroCyb.pdf
Berka, W., Brix, E., Smekal, C. (2003), Woher kommt das Neue? Kreativität in Wissenschaft und Kunst, Wien: Böhlau.
Binnig, G., Rohrer, H. (1982, August 10), Scanning Tunneling Microscope. Patent 4,343,993. United States Patent and Trade Mark Office.
Blau, J. (2005), Europe seeks greater creativity in basic research, Research Technology Management, May–June: 2–3.
Darwin, C. (1859), On the Origin of Species by Means of Natural Selection. London, John Murray (First Edition).
Dunbar, K. (1995), How scientists really reason: Scientific reasoning in real-world laboratories. In: Sternberg, R. J., Davidson, J. (Eds), Mechanisms of Insight, Cambridge, MA: MIT Press, pp. 363–395.
Dunbar, K. (1997), How scientists think: Online creativity and conceptual change in science, In: Ward, T. B., Smith, S. M., Vaid, S. (Eds), Conceptual Structures and Processes: Emergence, Discovery and Change, APA Press: Washington DC, pp. 461–493.
Einstein, A. (1905), Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies), Annalen der Physik, 17: 891.
Fuchs, S. (1999), Niklas Luhmann, Sociological Theory, 17(1): 117–119.
Ferry, G., Sulston, J. (2002), The Common Thread: A Story of Science, Politics, Ethics and the Human Genome, Joseph Henry Press Books: Washington DC.
Heinze, T. (2004), Nanoscience and nanotechnology in Europe: Analysis of publications and patent applications including comparisons with the United States, Nanotechnology Law & Business, 1(4): 427–447.
Heinze, T. (2006), Die Kopplung von Wissenschaft und Wirtschaft. Das Beispiel der Nanotechnologie, Frankfurt/New York: Campus.
Hemlin, S., Allwood, C. M., Martin, B. R. (2004), Creative Knowledge Environments: The Influences on Creativity in Research and Innovation, Cheltenham, UK: Edward Elgar.
Hessenbruch, A. (2004): Nanotechnology and the negotiation of novelty, In: Baird, D., Nordmann, A., Schummer, J. (Eds), Discovering the Nanoscale, Amsterdam: IOS Press, pp. 135–144.
Hollingsworth, R. (2002), Research Organizations and Major Discoveries in Twenthieth-century Science: A Case of Excellence in Biomedical Research, Berlin: WZB Discussion Paper P02-003.
Hollingsworth, R. (2004), Institutionalizing excellence in biomedical research: The case of Rockefeller University. In: Stapleton, D. H. (Ed.), Creating a Tradition of Biomedical Research. Contributions to the History of the Rockefeller University, New York: Rockefeller University Press, pp. 17–63.
Hutchinson Dictionary of Scientific Biography (1999), Helicon Publishing Ltd. Published under license in AccessScience@McGraw-Hill. http://www.accesscience.com (accessed March 27, 2006).
Kaku, M., (2004), Einstein’s Cosmos: How Albert Einstein’s Vision Transformed Our Understanding of Space and Time, London: Weidenfeld & Nicolson.
Kuhn, T. S. (1962), The Structure of Scientific Revolutions, Chicago: University of Chicago Press.
Laredo, P. (1999), The Development of a Reproducible Method for the Characterisation of a Large Set of Research Collectives for EC EUPSR Project TSER SOE1-CT96-1036, Paris: Armines/CSI.
Lovie, A.D., Lovie, P. (1993), Charles Spearman, Cyril Burt, and the origins of factor analysis, Journal of the History of the Behavioral Sciences, 29: 308–321.
Luhmann, N. (1984), Soziale Systeme: Grundriß einer allgemeinen Theorie. Frankfurt am Main: Suhrkamp. (Social Systems, Stanford University Press, 1995).
Luhmann, N. (1990), Die Wissenschaft der Gesellschaft, Frankfurt am Main: Suhrkamp.
Maddox, B. (2002), Rosalind Franklin: The Dark Lady of DNA, New York, HarperCollins.
Maritain, J. (1977), Creative Intuition in Art and Poetry, Princeton: Princeton University Press.
Nagel, S. S. (2002), Policy Creativity: New Perspectives, Hauppauge: Nova Science Publishers.
National Science Board (2004), Science and Engineering Indicators 2004, National Science Foundation, Division of Science Resources Statistics, Arlington, VA (NSB 04-01).
Noyons, E. C. M., Buter, R., Raan, A. F. J. V., Schmoch, U., Heinze, T., Hinze, S., Rangnow, R. (2003), Mapping Excellence in Science and Technology across Europe. Nanoscience and Nanotechnology, Report to the European Commission: University of Leiden.
Ochse, R. (1990), Before the Gates of Excellence. The Determination of Creative Genius, Cambridge: Cambridge University Press.
Otten, H. R. (2001), Wie kreativ ist der homo politicus? Überlegungen zu Max Weber, In: Bluhm, H., Gebhardt, J. (Eds), Konzepte politischen Handelns. Kreativität — Innovation — Praxen, Baden-Baden: Nomos, pp. 189–214.
Polanyi, M. (1966), The Tacit Dimension, London: Routledge & Kegan Paul Ltd.
Polanyi, M. (1969), Knowing and Being. With an introduction by Marjorie Grene, Chicago: Chicago University Press.
Segal, S. M., Busse, T. V., Mansfield, R. S. (1980), The relationship of scientific creativity in the biological sciences to predoctoral accomplishments and experiences, American Educational Research Journal, 17(4): 491–502.
Shapira, P., Kuhlmann, S. (Eds) (2003), Learning from Science and Technology Policy Evaluation, Cheltenham, UK.
Simonton, D. K. (1999), Origins of Genius: Darwinian Perspectives on Creativity, New York: Oxford University Press.
Simonton, D. K. (2004), Creativity in Science: Chance, Logic, Genius, and Zeitgeist, Cambridge: Cambridge University Press.
Spearman, C. E. (1904a), ’General intelligence’ objectively determined and measured, American Journal of Psychology, 5: 201–293.
Spearman, C. E. (1904b), Proof and measurement of association between two things, American Journal of Psychology, 15: 72–101.
Spearman, C. E. (1927), The Abilities of Man, Their Nature and Measurement. New York: Macmillan.
Stachel, J. (2002), ’What Song the Syrens Sang’: How Did Einstein Discover Special Relativity? In: Stachel (Ed.), J. Einstein from “B” to “Z”, Boston: Birkhäuser, pp. 157–169.
Sternberg, R. J. (2003), Wisdom, Intelligence, and Creativity Synthesized, Cambridge: Cambridge University Press.
Stichweh, R. (1994), Wissenschaft, Universität, Professionen. Soziologische Analysen, Frankfurt am Main: Suhrkamp, pp. 15–51.
Stumpf, H. (1995), Scientific creativity: A short overview, Educational Psychology Review, 7(3): 225–241.
Sutton, R. I. (2002), Weird ideas that spark innovation. Counterintuitive approaches are helping companies their creative edge, MIT Sloan Management Review, Winter 2002, pp. 83–87.
Swedberg, R., George A., Akerlof (1994), In: Swedberg, R. (Ed.), Economics and Sociology. Redefining Their Boundaries: Conversations with Economists and Sociologists, New Jersey: Princeton University Press, pp. 61–77.
Von Bertalanffy, L. (1949), The concepts of systems in physics and biology, Bulletin of the British Society for the History of Science, 1: 44–45.
Williams, R. H., Zimmerman, D. W., Zumbo, B. D., Ross, D. (2003), Charles Spearman: British behavioral scientist, Human Nature Review, 3: 114–118.
Willke, H. (1996), Systemtheorie I: Grundlagen, Stuttgart: Lucius & Lucius.
Whitley, R. (2000), The Intellectual and Social Organization of the Sciences, 2nd edition, Oxford: Oxford University Press.
Zuckerman, H. (1977), Scientific Elite, New York: Free Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heinze, T., Shapira, P., Senker, J. et al. Identifying creative research accomplishments: Methodology and results for nanotechnology and human genetics. Scientometrics 70, 125–152 (2007). https://doi.org/10.1007/s11192-007-0108-6
Received:
Issue Date:
DOI: https://doi.org/10.1007/s11192-007-0108-6