Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Applications of non-parametric frontier production methods such as Data Envelopment Analysis (DEA) have gained popularity and recognition in scientometrics. DEA seems to be a useful method to assess the efficiency of research units in different fields and disciplines. However, DEA results give only a synthetic measurement that does not expose the multiple relationships between scientific production variables by discipline. Although some papers mention the need for studies by discipline, they do not show how to take those differences into account in the analysis. Some studies tend to homogenize the behaviour of different practice communities. In this paper we propose a framework to make inferences about DEA efficiencies, recognizing the underlying relationships between production variables and efficiency by discipline, using Bayesian Network (BN) analysis. Two different DEA extensions are applied to calculate the efficiency of research groups: one called CCRO and the other Cross Efficiency (CE). A BN model is proposed as a method to analyze the results obtained from DEA. BNs allow us to recognize peculiarities of each discipline in terms of scientific production and the efficiency frontier. Besides, BNs provide the possibility for a manager to propose what-if scenarios based on the relations found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Retrieved February 2009, from http://industrial.udea.edu.co/jgvillegas/Pagina%20DEA/index.html.

  2. Retrieved February 2009, from http://www.hugin.com/.

  3. Retrieved July 2008, from http://thirina.colciencias.gov.co:8081/scienti/jsp/grupos.jsp.

References

  • Bonaccorsi, A., & Daraio, C. (2004). Econometric approaches to the analysis of productivity of R&D systems. Production functions and production frontiers. In W. Glänzel, U. Schmoch, M. Zitt, E. Bassecoulard, & M. Luwel (Eds.), Handbook of quantitative science and technology research (pp. 51–74). Amsterdam, Netherlands: Springer.

    Google Scholar 

  • Bonaccorsi, A., Daraio, C., & Simar, L. (2006). Advanced indicators of productivity of universities. An application of robust nonparametric methods to Italian data. Scientometrics, 66(2), 389–410.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operational Research, 2(6), 429–444.

    Article  MATH  MathSciNet  Google Scholar 

  • Cherchye, L., & Vanden Abeele, P. (2005). Onresearch efficiency: A microanalysis of Dutch university research in economic and business management. Research Policy, 34, 495–516.

    Google Scholar 

  • Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). In J. Zhu, W. W. Cooper, R. D. Banker, & L. M. Seiford (Eds.), Handbook on data envelopment analysis (pp. 1–39). Boston: Kluwer Academic.

    Google Scholar 

  • Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. The Journal of the Operational Research Society, 45(5), 567–578.

    MATH  Google Scholar 

  • Garg, K. C., Gupta, B. M., Jamal, T., Roy, S., & Kumar, S. (2005). Assessment of impact of AICTE funding on R&D and educational development. Scientometrics, 65(2), 151–160.

    Article  Google Scholar 

  • Guan, J. C., & Wang, J. X. (2004). Evaluation and interpretation of knowledge production efficiency. Scientometrics, 59(1), 131–155.

    Article  Google Scholar 

  • Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. Jordan (Ed.), Learning in graphical models. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kim, H., & Park, Y. (2008). The impact of R&D collaboration on innovative performance in Korea: A Bayesian network approach. Scientometrics, 75(3), 535–554.

    Article  Google Scholar 

  • Kjaerulff, U. B., & Madsen, A. L. (2008). Bayesian networks and influence diagrams. A guide to construction and analysis. New York: Springer.

    Book  MATH  Google Scholar 

  • Korhonen, P., Tainio, R., & Wallenius, J. (2001). Value efficiency analysis of academic research. European Journal of Operational Research, 130(1), 121–132.

    Article  MATH  Google Scholar 

  • Lamirel, J. C., Al Shehabi, S., Francois, C., & Polanco, X. (2004). Using a compound approach based on elaborated neural network for Webometrics: An example issued from the EICSTES project. Scientometrics, 61(3), 427–441.

    Article  Google Scholar 

  • Lehmann, S., Jackson, A. D., & Lautrup, B. E. (2008). A quantitative analysis of indicators of scientific performance. Scientometrics, 76(2), 369–390.

    Article  Google Scholar 

  • Leydesdorff, L. (1992). Knowledge representations, Bayesian inferences, and empirical science studies. Social Science Information, 31(2), 213–237.

    Article  Google Scholar 

  • Meng, W., Hu, Z., & Liu, W. (2006). Efficiency evaluation of basic research in China. Scientometrics, 69(1), 85–101.

    Article  Google Scholar 

  • Pearl, J. (Ed.). (2000). Causality: Models, reasoning, and inference (pp. 1–40). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Restrepo, M., & Villegas, J. (2007). Clasificación de grupos de investigación colombianos aplicando análisis envolvente de datos. Revista Facultad de Ingeniería Universidad de Antioquia, 42, 105–119.

    Google Scholar 

  • Rousseau, S., & Rousseau, R. (1997). Data envelopment analysis as a tool for constructing scientometric indicators. Scientometrics, 40(1), 45–56.

    Article  Google Scholar 

  • Rousseau, S., & Rousseau, R. (1998). The scientific wealth of European nations: Taking effectiveness into account. Scientometrics, 42(1), 75–87.

    Article  Google Scholar 

  • Sexton, T. R., Slinkman, R. H., & Hogan, A. (1986). Data envelopment analysis: Critique and extensions. In R. H. Silkman (Ed.), Measuring efficiency: An assessment of Data Envelopment Analysis (Vol. 32, pp. 73–105). San Francisco: Jossey-Bass.

    Google Scholar 

  • Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Discovery algorithms for causally sufficient structures. In P. Spirtes, C. N. Glymour, & R. Scheines (Eds.), Causation, prediction, and search (pp. 73–122). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristhian Fabián Ruiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, C.F., Bonilla, R., Chavarro, D. et al. Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks. Scientometrics 83, 711–721 (2010). https://doi.org/10.1007/s11192-009-0122-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-009-0122-y

Keywords