Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploring the topic hierarchy of digital library research in China using keyword networks: a K-core decomposition approach

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Exploring the topic hierarchy of a research field can help us better recognize its intellectual structure. This paper proposes a new method to automatically discover the topic hierarchy, in which the keyword network is constructed to represent topics and their relations, and then decomposed hierarchically into shells using the K-core decomposition method. Adjacent shells with similar morphology are merged into layers according to their density and clustering coefficient. In the keyword network of the digital library field in China, we discover four different layers. The basic layer contains 17 tightly-interconnected core concepts which form the knowledge base of the field. The middle layer contains 13 mediator concepts which are directly connected to technology concepts in the basic layer, showing the knowledge evolution of the field. The detail layer contains 65 concrete concepts which can be grouped into 13 clusters, indicating the research specializations of the field. The marginal layer contains peripheral or isolated concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., &Vespignani, A. (2005). K-core decomposition: A tool for the visualization of large scale networks. arXiv preprint cs/0504107.

  • Barabási, A. L., Dezső, Z., Ravasz, E., Yook, S. H., & Oltvai, Z. (2003). Scale-free and hierarchical structures in complex networks. Sitges Proceedings on Complex Networks, 661(1), 1–16.

  • Cambrosio, A., Limoges, C., Courtial, J. P., & Laville, F. (1993). Historical scientometrics? Mapping over 70 years of biological safety research with co-word analysis. Scientometrics, 27(2), 119–143.

    Article  Google Scholar 

  • Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., & Shir, E. (2007). A model of Internet topology using K-shell decomposition. Proceedings of the National Academy of Sciences, 104(27), 11150–11154.

    Article  Google Scholar 

  • Chen, G., & Xiao, L. (2016). Selecting publication keywords for domain analysis in bibliometrics: a comparison of three methods. Journal of Informetrics, 10(1), 212–223.

    Article  Google Scholar 

  • Choi, J., Yi, S., & Lee, K. C. (2011). Analysis of keyword networks in MIS research and implications for predicting knowledge evolution. Information and Management, 48(8), 371–381.

    Article  Google Scholar 

  • Clauset, A., Moore, C., & Newman, M. E. (2007). Structural inference of hierarchies in networks. In E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, & A. X. Zheng (Eds.), Statistical network analysis: Models, issues, and new directions (pp. 1–13). Berlin: Springer.

    Chapter  Google Scholar 

  • Clauset, A., Moore, C., & Newman, M. E. (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98–101.

    Article  Google Scholar 

  • Collins, J. J., & Chow, C. C. (1998). It’s a small world. Nature, 393(6684), 409–410.

    Article  Google Scholar 

  • Corbett, A. T., & Anderson, J. R. (1994). Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4), 253–278.

    Article  Google Scholar 

  • Dong, W. (2009). Analysis on hotspot of digital library in home during 10 years based on co-word analysis. Document Information and Knowledge, 5, 58–63.

    Google Scholar 

  • Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2006). K-core organization of complex networks. Physical Review Letters, 96(4), 040601.

    Article  MATH  Google Scholar 

  • Green, R. (2001). Relationships in the organization of knowledge: An overview. In A. Bean & R. Green (Eds.), Relationships in the organization of knowledge (pp. 3–18). Berlin: Springer.

    Chapter  Google Scholar 

  • He, Q. (1999). Knowledge discovery through co-word analysis. Library Trends, 48(1), 133–159.

    Google Scholar 

  • Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. A. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888–893.

    Article  Google Scholar 

  • Lee, P. C., Su, H. N., & Chan, T. Y. (2010). Assessment of ontology-based knowledge network formation by vector-space model. Scientometrics, 85(3), 689–703.

    Article  Google Scholar 

  • Liu, G. Y., Hu, J. M., & Wang, H. L. (2012). A co-word analysis of digital library field in China. Scientometrics, 91(1), 203–217.

    Article  Google Scholar 

  • Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research and Development, 2(2), 159–165.

    Article  MathSciNet  Google Scholar 

  • Ma, W. F., & Du, X. Y. (2007). Some theoretical issues relating to knowledge organization system. Journal of Library Science in China, 33(2), 13–17. (in China).

    Google Scholar 

  • Nguyen, S. H., & Chowdhury, G. (2013). Interpreting the knowledge map of digital library research (1990–2010). Journal of the American Society for Information Science and Technology, 64(6), 1235–1258.

    Article  Google Scholar 

  • Qiu, J. P., & Wang, M. Z. (2010). The analysis of the digital library research paper in China from the years of 1999 to 2008. Journal of Intelligence, 29(2), 1–5. (in China).

    Google Scholar 

  • Quoniam, L., Balme, F., Rostaing, H., Giraud, E., & Dou, J. M. (1998). Bibliometric law used for information retrieval. Scientometrics, 41(1), 83–91.

    Article  Google Scholar 

  • Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabási, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551–1555.

    Article  Google Scholar 

  • Rokaya, M., Atlam, E., Fuketa, M., Dorji, T. C., & Aoe, J. I. (2008). Ranking of field association terms using co-word analysis. Information Processing and Management, 44(2), 738–755.

    Article  Google Scholar 

  • Sales-Pardo, M., Guimera, R., Moreira, A. A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of Sciences, 104(39), 15224–15229.

    Article  Google Scholar 

  • Salton, G. (1975). Theory of indexing. Philadelphia, PA: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Shen, X., Zheng, Z., Han, S., & Shen, C. (2008). A review of the major projects constituting the China Academic Digital Library. The Electronic Library, 26(1), 39–54.

    Article  Google Scholar 

  • Su, X. N., & Xia, L. X. (2011). Topic analysis of digital library research from 2000 to 2009 in China: Based on the statistical data of key words released by CSSCI. Journal of Library Science in China, 37(7), 60–69. (in China).

    Google Scholar 

  • Tong, A. H. Y., Drees, B., Nardelli, G., Bader, G. D., Brannetti, B., Castagnoli, L., et al. (2002). A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 295(5553), 321–324.

    Article  Google Scholar 

  • Verspagen, B., & Werker, C. (2004). Keith Pavitt and the invisible college of the economics of technology and innovation. Research Policy, 33(9), 1419–1431.

    Article  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  • Xu, J., & Yang, S. L. (2011). Research status and frontier about digital library based on mapping knowledge domain. Library, 6, 012. (in China).

    Google Scholar 

  • Yi, S., & Choi, J. (2012). The organization of scientific knowledge: The structural characteristics of keyword networks. Scientometrics, 90(3), 1015–1026.

    Article  Google Scholar 

  • Zhang, X., & Lv, Y. J. (2010). Research overview on development of digital library in China in the past five years. Researches in Library Science, 2, 18–22. (in China).

  • Zhang, G. Q., Yang, Q. F., Cheng, S. Q., & Zhou, T. (2008). Evolution of the Internet and its cores. New Journal of Physics, 10(12), 123027.

    Article  Google Scholar 

  • Zhang, H., Zhao, H., Cai, W., Liu, J., & Zhou, W. (2010). Using the k-core decomposition to analyze the static structure of large-scale software systems. Journal of Supercomputing, 53(2), 352–369.

  • Zhao, L., & Zhang, Q. (2011). Mapping knowledge domains of Chinese digital library research output, 1994–2010. Scientometrics, 89(1), 51–87.

    Article  Google Scholar 

  • Zhao, S. X., Zhang, P. L., Li, J., Tan, A. M., & Ye, F. Y. (2014). Abstracting the core subnet of weighted networks based on link strengths. Journal of the Association for Information Science and Technology, 65(5), 984–994.

    Article  Google Scholar 

  • Zhou, Q. (2005). The development of digital libraries in China and the shaping of digital librarians. Electronic Library, The, 23(4), 433–441.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Major Project of the National Social Science Foundation of China (12&ZD221), the Project of National Natural Science Foundation of China (71273125), the Fundamental Research Funds for the Central Universities (No. 30916013101). The authors are grateful to anonymous referees and editors for their invaluable and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Chen, G., Sun, J. et al. Exploring the topic hierarchy of digital library research in China using keyword networks: a K-core decomposition approach. Scientometrics 108, 1085–1101 (2016). https://doi.org/10.1007/s11192-016-2051-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-2051-x

Keywords