Abstract
Citation recommendation helps researchers perform reference searching more efficiently. Traditional methods often focus separately on diversification and personalization, each with unique advantages and limitations. In this study, we propose a new citation recommendation paradigm, personalized global citation recommendation with diversification awareness (PGCR-DA), which integrates the two approaches to generate more relevant candidate citations. Our work involved two major tasks. The first task involves generating a pool of diversified candidate citations for each target paper, by using the Random Walk with Restart on a constructed heterogeneous graph to identify the first relevant citation. The remaining diversified candidates are returned by using the Maximal Marginal Relevance model, where diversified citations are obtained based on a two-dimensional, i.e., the semantic space and publication date of the paper, diversification strategy. The second task focuses on personalization, where the ranking list obtained in the first task is reranked by modeling fine-grained and dynamic user preferences, informed by the analysis of both the textual and entity space from the users’ previous publications. Preliminary experiments on the AAN and DBLP datasets verify our hypothesis that diversification and personalization can be effectively integrated through our approach. The results further demonstrate that PGCR-DA outperforms the competitive global citation recommendation methods with respect to a series of metrics.
Notes
Available at: https://github.com/allenai/scibert/.
Available at: http://clair.eecs.umich.edu/aan/index.php.
Available at: https://www.aminer.cn/citation.
Available at: http://gibbslda.sourceforge.net.
Available at: https://github.com/boudinfl/pke.
References
Ali, Z., Kefalas, P., Muhammad, K., Ali, B., & Imran, M. (2020). Deep learning in citation recommendation models survey. Expert Systems with Applications, 162, 113790. https://doi.org/10.1016/j.eswa.2020.113790
Ali, Z., Qi, G. L., Muhammad, K., Bhattacharyya, S., Ullah, I., & Abro, W. (2021a). Citation recommendation employing heterogeneous bibliographic network embedding. In Neural Computing and Applications, 34, 10229–10242. https://doi.org/10.1007/s00521-021-06135-y
Ali, Z., Qi, G. L., Muhammad, K., Kefalas, P., & Khusro, S. (2021b). Global citation recommendation employing generative adversarial network. Expert Systems with Applications, 180, 114888. https://doi.org/10.1016/j.eswa.2021.114888
Ali, Z., Ullah, I., Khan, A., Jan, A. U., & Muhammad, K. (2021c). An overview and evaluation of citation recommendation models. Scientometrics, 126, 4083–4119. https://doi.org/10.1007/s11192-021-03909-y
Anand, A., Chakraborty, T., & Das, A. (2017). FairScholar: Balancing relevance and diversity for scientific paper recommendation. In European Conference on Information Retrieval, 10193, 753–757. Lecture Notes in Computer Science. Springer: Cham. https://doi.org/10.1007/978-3-319-56608-5_76
Ayala-Gomez, F., Daroczy, B., Benczur, A., Mathioudakis, M., & Gionis, A. (2018). Global citation recommendation using knowledge graphs. Journal of Intelligent and Fuzzy Systems, 34(5), 3089–3100. https://doi.org/10.3233/JIFS-169493
Cai, X. Y., Han, J. W., Li, W. J., Zhang, R. X., Pan, S. R., & Yang, L. B. (2018). A three-layered mutually reinforced model for personalized citation recommendation. IEEE Transactions on Neural Networks and Learning Systems, 29(12), 6026–6037. https://doi.org/10.1109/TNNLS.2018.2817245
Cai, X. Y., Zheng, Y., Yang, L. B., Dai, T., & Guo, L. T. (2019). Bibliographic network representation based personalized citation recommendation. IEEE Access, 7, 457–467. https://doi.org/10.1109/ACCESS.2018.2885507
Chakraborty, T., Modani, N., Narayanam, R., & Nagar, S. (2015). Discern: A diversified citation recommendation system for scientific queries. In IEEE 31st international conference on data engineering (pp. 555–566). https://doi.org/10.1109/ICDE.2015.7113314.
Chen, W. Y., Cai, F., Chen, H. H., & Rijke, M. D. (2020). Personalized query suggestion diversification in information retrieval. Frontiers of Computer Science, 14(3), 143602. https://doi.org/10.1007/s11704-018-7283-x
Chen, X., Zhao, H. J., Zhao, S., Chen, J., & Zhang, Y. P. (2019). Citation recommendation based on citation tendency. Scientometrics, 121(2), 937–956. https://doi.org/10.1007/s11192-019-03225-6
Cheng, P.Z., Wang, S.Q., Ma, J., Sun, J.K., & Xiong, H. (2017). Learning to recommend accurate and diverse items. In Proceedings of the 26th international conference on World Wide Web (pp. 183–192). https://doi.org/10.1145/3038912.3052585
Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., & Mackinnon, I. (2008). Novelty and diversity in information retrieval evaluation. In Proceedings of the 31st annual international ACM SIGIR conference on research and the development in information retrieval (pp. 659–666). https://doi.org/10.1145/1390334.1390446
Dinh, T. N., Pham, P., Nguyen, G. L., & Vo, B. (2024). Enhancing local citation recommendation with recurrent highway networks and SciBERT-based embedding. Expert Systems with Application, 243, 122911. https://doi.org/10.1016/j.eswa.2023
Ebesu, T., & Fang, Y. (2017). Neural citation network for context-aware citation recommendation. In Proceedings of the 40th international ACM SIGIR conference on research and development in information retrieval (pp. 1093–1096). https://doi.org/10.1145/3077136.3080730
Gori, M., & Pucci, A. (2006). Research paper recommender systems: A random-walk based approach. In Proceedings of the 2006 IEEE/WIC/ACM international conference on web intelligence (pp. 778–781). https://doi.org/10.1109/WI.2006.149
Gündoan, E., & Kaya, M. (2022). A novel hybrid paper recommendation system using deep learning. Scientometrics, 127(7), 3837–3855. https://doi.org/10.1007/s11192-022-04420-8
Guo, L. T., Cai, X. Y., Hao, F., Mu, D. J., Fang, C. J., & Yang, L. B. (2017). Exploiting fine-grained co-authorship for personalized citation recommendation. IEEE Access, 5, 12714–12725. https://doi.org/10.1109/ACCESS.2017.2721934
Guo, L. T., Cai, X. Y., Qin, H. H., Hao, F., & Guo, S. S. (2022). A content-sensitive citation representation approach for citation recommendation. Journal of Ambient Intelligence and Humanized Computing, 13, 3163–3174. https://doi.org/10.1007/s12652-021-03153-5
Gupta, S., & Varma,V. (2017). Scientific article recommendation by using distributed representations of text and graph. In Proceedings of the 26th international conference on World Wide Web companion (pp. 1267–1268). https://doi.org/10.1145/3041021.3053062
Huang, W.Y., Kataria, S., Caragea, C., Mitra, P., Giles, L.C., & Rokach, L. (2012). Recommending citations: Translating papers into references. In Proceedings of the 21st ACM international conference on information and knowledge management (pp. 1910–1914). https://doi.org/10.1145/2396761.2398542
Jebari, C., Herrera-Viedma, E., & Cobo, M. J. (2023). Context-aware citation recommendation of scientific papers: comparative study, gaps and trends. Scientometrics, 128, 4243–4268. https://doi.org/10.1007/s11192-023-04773-8
Jeong, C., Jang, S., Park, E., & Choi, S. (2020). A context-aware citation recommendation model with BERT and graph convolutional networks. Scientometrics, 124, 1907–1922. https://doi.org/10.1007/s11192-020-03561-y
Jiang, Z.R., Liu, X.Z., & Gao, L.C. (2014). Dynamic topic/citation influence modeling for chronological citation recommendation. In Proceedings of the 5th international workshop on web-scale knowledge representation retrieval and reasoning (pp. 15–18). ACM. https://doi.org/10.1145/2663792.2663795
Kammari, M., & Bhavani, S. D. (2023). Citation recommendation using modified HITS algorithm. Computing. https://doi.org/10.1007/s00607-023-01213-6
Kieu, B. T., Unanue, I. J., Pham, S. B., Phan, H. X., & Piccardi, M. (2021). NeuSub: A neural submodular approach for citation recommendation. IEEE Access, 9, 148459–148468. https://doi.org/10.1109/ACCESS.2021.3120727
Kucuktunc, O., Saule, E., Kaya, K., & Çatalyürek, Ü. V. (2012). Diversifying citation recommendations. Acm Transactions on Intelligent Systems & Technology, 5(4), 1–21. https://doi.org/10.1145/2668106
Li, X., Chen, Y., Pettit, B., & Rijke, M. D. (2019). Personalised reranking of paper recommendations using paper content and user behavior. ACM Transactions on Information Systems, 37(3), 1–23. https://doi.org/10.1145/3312528
Liang, S.S., Ren, Z.C., & Rijke, M.D. (2014). Personalized search result diversification via structured learning. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 751–760). https://doi.org/10.1145/2623330.2623650
Liu, Y.N, Yan, R., & Yan, H.F. (2013). Guess what you will cite: Personalized citation recommendation based on users’ preference. In: R. E. Banchs, F. Silvestri, T. Y. Liu, M. Zhang, S. Gao, and J. Lang (eds.), Information retrieval technology, 8281. AIRS 2013. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-642-45068-6_37
Liu, H. F., Kong, X. J., Bai, X. M., Wang, W., Bekele, T. M., & Xia, F. (2015). Context-based collaborative filtering for citation recommendation. IEEE Access, 3, 1695–1703. https://doi.org/10.1109/ACCESS.2015.2481320
Lu, Y. H., Yuan, M., Liu, J. X., & Chen, M. H. (2023). Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion. Scientometrics, 128, 1367–1393. https://doi.org/10.1007/s11192-022-04566-5
Ma, S. T., Zhang, H., Zhang, C. Z., & Liu, X. Z. (2021). Chronological citation recommendation with time preference. Scientometrics, 126, 2991–3010. https://doi.org/10.1007/s11192-021-03878-2
Meng, F.Q., Gao, D.H., Li, W.J., Sun, X., & Hou, Y.X. (2013). A unified graph model for personalized query-oriented reference paper recommendation. In Proceedings of the 22nd ACM international conference on information & knowledge management (pp. 1509–1512). https://doi.org/10.1145/2505515.2507831
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Proceedings of the 26th International Conference on Neural Information Processing Systems, 2, 3111–3119. https://doi.org/10.48550/arXiv.1310.4546
Mu, D. J., Guo, L. T., Cai, X. Y., & Hao, F. (2018). Query-focused personalized citation recommendation with mutually reinforced ranking. IEEE Access, 6, 3107–3119. https://doi.org/10.1109/ACCESS.2017.2787179
Nallapati, R.M., Ahmed, A., Xing, E.P., & Cohen, W.W. (2008). Joint latent topic models for text and citations. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 542–550). https://doi.org/10.1145/1401890.1401957
Pornprasit, C., Liu, X., Kiattipadungkul, P., Kertkeidkachorn, N., Kim, K.-S., Noraset, T., Hassan, S.-U., & Tuarob, S. (2022). Enhancing citation recommendation using citation network embedding. Scientometrics, 127(1), 233–264. https://doi.org/10.1007/s11192-021-04196-3
Qi, H., Jian, P., Kifer, D., Mitra, P., & Giles, L. (2010). Context-aware citation recommendation. In Proceedings of the 19th international conference on World Wide Web (pp. 421–430). https://doi.org/10.1145/1772690.1772734
Radev, D. R., Muthukrishnan, P., Qazvinian, V., & Abu-Jbara, A. (2013). The ACL anthology network corpus. Language Resources and Evaluation, 47(4), 919–944. https://doi.org/10.1007/s10579-012-9211-2
Radlinski,F., & Dumais,S. (2006) .Improving personalized web search using result diversification. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 691–692). https://doi.org/10.1145/1148170.1148320
Strohman, T., Croft, W.B., & Jensen, D. (2007). Recommending citations for academic papers. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 705–706). https://doi.org/10.1145/1277741.1277868
Sugiyama, K. & Kan, M.-Y. (2013). Exploiting potential citation papers in scholarly paper recommendation. In Proceedings of the 13th ACM/IEEE-CS joint conference on digital libraries (pp. 153–162). https://doi.org/10.1145/2467696.2467701
Vallet, D., & Castells, P. (2012). Personalized diversification of search results. In Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval (pp. 841–850). https://doi.org/10.1145/2348283.2348396
Wang, C., & Blei, D.M. (2011). Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 448–456). https://doi.org/10.1145/2020408.2020480
Wang, X.J., Qi, J.Z., Ramamohanarao, K., Sun, Y., Li, B., & Zhang, R. (2018). A joint optimization approach for personalized recommendation diversification. In: D. Phung, V. Tseng, G. Webb, B. Ho, M. Ganji, and L. Rashidi (eds.), Advances in knowledge discovery and data mining, 10939 (pp. 597–609). PAKDD 2018. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-319-93040-447
Wang, S.J., Hu, L., Wang, Y., He, X.N., Sheng, Q.Z., Orgun, M.A., Cao, L.B., Ricci, F., & Yu, P.S. (2021). Graph learning based recommender systems: A review. In Proceedings of the 30th international joint conference on artificial intelligence (IJCAI 2021 Survey Track) (pp. 1–9). https://doi.org/10.48550/arXiv.2105.06339
Wu,Q., Liu, Y., Miao, C.Y., Zhao, B.Q., Zhao, Y., & Guan, L. (2019). PD-GAN: Adversarial learning for personalized diversity-promoting recommendation. In Proceedings of the 28th international joint conference on artificial intelligence (pp. 3870–3876). https://doi.org/10.24963/ijcai.2019/537
Wu, D., Yang, R. X., & Shen, C. (2021). Sentiment word co-occurrence and knowledge pair feature extraction based LDA short text clustering algorithm. Journal of Intelligent Information Systems, 56(1), 1–23. https://doi.org/10.1007/s10844-020-00597-7
Xie, Q. Q., Zhu, Y. T., Huang, J. M., Du, P., & Nie, J. Y. (2022). Graph neural collaborative topic model for citation recommendation. ACM Transactions on Information Systems, 40(48), 1–30. https://doi.org/10.1145/3473973
Yang, Y.H., Chen, H.H., Lu,W., & Ayala, B.R. (2018). Diversifying citation contexts in academic literature for knowledge recommendation. In Proceedings of the 18th ACM/IEEE on joint conference on digital libraries (pp. 397–398). https://doi.org/10.1145/3197026.3203904
Yang, L. B., Zhang, Z. Q., Cai, X. Y., & Dai, T. (2019). Attention-based personalized encoder-decoder model for local citation recommendation. Computational Intelligence and Neuroscience, 2019, 1–7. https://doi.org/10.1155/2019/1232581
Zhang, Y., Yang, L., Cai, X., & Dai, H. (2018). A novel personalized citation recommendation approach based on GAN. In International symposium on methodologies for intelligent systems (pp. 268–278). https://doi.org/10.1007/978-3-030-01851-1_26
Zhang, J. Z., & Zhu, L. P. (2022). Citation recommendation using semantic representation of cited papers’ relations and content. Expert Systems with Applications, 187, 115826. https://doi.org/10.1016/j.eswa.2021.115826
Zhang, Y., & Ma, Q. (2020). Dual attention model for citation recommendation. Proceedings of the 28th International Conference on Computational Linguistics, 48, 403–470. https://doi.org/10.1162/coli_a_00438
Acknowledgements
We are grateful to the anonymous reviewers for their valuable comments and suggestions which helped in improving the quality of this manuscript.
Funding
This work is supported by The National Social Science Fund of China, 21BTQ072.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, X., Song, S. & Xiong, Y. Personalized global citation recommendation with diversification awareness. Scientometrics 129, 3625–3657 (2024). https://doi.org/10.1007/s11192-024-05057-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11192-024-05057-5