Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An estimate of the influence of loading effects on tectonic velocities in the Pyrenees

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Surface displacements due to temporal changes in environmental mass redistributions are observable in the coordinate time series of many Global Navigation Satellite System (GNSS) sites. In this study, we investigated the effect of loading on estimates of tectonic velocity computed from campaign-style GNSS observations. The study region is in the Pyrenees mountain range between France and Spain (ResPyr campaigns). In this area, seismic activity is continuous and moderate and the expected amplitude of the horizontal tectonic velocity is less than 0.5 mm/yr. In order to determine the velocity, 4 sparse GNSS campaigns were carried out from 1995 to 2010. Considering this small rate of deformation, loading phenomena can contribute a non-negligible artifact to the velocity computation that could affect our geodynamical interpretation. In this investigation, we specifically considered the atmospheric, hydrological, and non-tidal ocean loading phenomena. The computed loading deformations for this region show the horizontal displacements are dominated by the non-tidal ocean loading (maximum 4 mm for the North and 3.1 mm for the East components); the main vertical contributions are due to the atmospheric and continental water storage loading (maximum 14.3 for the atmosphere and 8.1 mm for the hydrology, respectively). We have found that the dominant loading effect on the horizontal velocity is the non-tidal ocean loading (mean of 0.11 mm/yr), whereas the vertical component is dominated by the hydrological loading (mean of 0.21 mm/yr). Since the study area is in a mountainous region, we also analyzed the difference between the atmospheric and the topography dependent atmospheric loading models at our GNSS campaign sites. We did not find any significant difference between the two atmospheric loading models in terms of horizontal velocity. Finally, we performed simulations to identify the optimum timing and frequency of future GNSS campaigns in this area that would minimize the loading effects on tectonic velocity estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blewitt G. and Lavallée D., 2002. Effect of annual signals on geodetic velocity. J. Geophys. Res., 107(B7), DOI:10.1029/2001JB000570.

    Google Scholar 

  • Blewitt G., Altamimi Z., Davis J., Gross R., Kuo C.-Y., Lemoine F., Moore A., Neilan R., Plag H.-P., Rothacher M., Shum C.K., Sideris M., Schöne T., Tregoning P. and Zerbini S., 2010. Geodetic observations and global reference frame contributions to understanding sea-level rise and variability. In: Church J., Woodworth P., Aarup T. and Wilson S. (Eds.), Understanding Sea-Level Rise and Variability. Wiley-Blackwell, Sussex, U.K., DOI: 10.1002/9781444323276.ch9.

    Google Scholar 

  • Boehm J., Niell A., Tregoning P. and Schuh H., 2006. Global Mapping Function (GMF): a new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304, DOI:10.1029/2005GL025546.

    Article  Google Scholar 

  • Chambers D.P., Tamisiea M.E., Nerem R.S. and Ries J.C., 2007. Effects of ice melting on GRACE observations of ocean mass trends. Geophys. Res. Lett., 34, L05610, DOI: 10.1029/2006GL029171.

    Article  Google Scholar 

  • Dow J.M., Neilan R.E. and Rizos C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems J. Geodesy, 83, 191–198, DOI: 10.1007/s00190-008-0300-3.

    Article  Google Scholar 

  • Farrell W.E., 1972. Deformation of the Earth by surface loads. Rev. Geophys., 10, 761–797, DOI: 10.1029/RG010i003p00761.

    Article  Google Scholar 

  • Fukumori I., 2002. A partitioned Kalman filter and smoother. Mon. Wea. Rev., 130, 1370–1383.

    Article  Google Scholar 

  • Herring T.A., King R.W. and McClusky S.C., 2010. Introduction to GAMIT/GLOBK. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 26 October 2010 (http://www-gpsg.mit.edu/~simon/gtgk/Intro_GG.pdf).

    Google Scholar 

  • Kim S.-B., Tong L. and Fukumori I., 2007. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Nino-3 region. J. Climate, 20, 3822–3843, DOI: 10.1175/JCLI4206.1.

    Article  Google Scholar 

  • King M., Altamimi Z., Boehm J., Bos M., Dach R., Elosegui P., Fund F., Hernandez-Pajares M., Lavalée D., Mendes Cerveira P.J., Penna N., Riva R., Steigenberger P., van Dam T., Vittuari L., Williams S. and Willis P., 2010. Improved constraints on models of glacial isostatic adjustment: a review of the contribution of ground-based geodetic observations. Surv. Geophys., 31, 465–507. DOI: 10.1007/s10712-010-9100-4.

    Article  Google Scholar 

  • Lavallée D., Moore P., Clarke P.J., Petrie E.J., van Dam T., and King M., 2010. J2: An evaluation of new estimates from GPS, GRACE, and load models compared to SLR. Geophys. Res. Lett., 37, L22403, DOI:10.1029/2010GL045229.

    Article  Google Scholar 

  • Nicolas J., Perosanz F., Rigo A., Le Bliguet G., Morel L. and Fund F., 2012. Impact of loading phenomena on velocity field computation from GPS campaigns: application to ResPyr GPS campaign in the Pyrenees. In: Kenyon S., Pacino M.C. and Marti U. (Eds.), Geodesy for Planet Earth. International Association of Geodesy Symposia 136, Part 3, 643–649, DOI: 10.1007/978-3-64220338-1_79, Springer-Verlag, Heidelberg, Germany.

    Chapter  Google Scholar 

  • NOAA, 1988. ETOPO5, Data Announcement 88-MGG-02, Digital relief of the Surface of the Earth. National Gephysical Data Center, Boulder, CO.

    Google Scholar 

  • Nocquet J.M., 2012. Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics, 579, 220–242, DOI:10.1016/j.tecto.2012.03.037.

    Article  Google Scholar 

  • Nordman M., Mäkinen J., Virtanen H., Johansson J., Bilker-Koivula M. and Virtanen J., 2009. Crustal loading in vertical GPS time series in Fennoscandia. J. Geodyn., 48. DOI: 10.1016/j.jog.2009.09.003.

  • Petit G. and Luzum B. (Eds.), 2010. IERS Conventions (2010). IERS Technical Note 36, IERS Convention Centre, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 pp., ISBN 3-89888-989-6.

    Google Scholar 

  • Petrov L. and Boy J.P., 2004. Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 109, B03405, DOI:10.1029/2003JB002500.

    Google Scholar 

  • Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D. and Toll D., 2004. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc., 85, 381–394, DOI: 10.1175/bams-85-3-381.

    Article  Google Scholar 

  • Rui H., Teng W., Vollmer B., Mocko D.M., Beaudoing H.K., Nigro J., Gray M., Maidment D. and Hooper R., 2011. Bridging the gap between NASA hydrological data and the geospatial community. ASPRS Annual Conference, Milwaukee, Wisconsin May 1-5, 2011 (http://disc.sci.gsfc.nasa.gov/additional/publications/bridging_the_gap_nldas).

    Google Scholar 

  • Scherneck H.-G., Johansson J.M., Koivula H., van Dam T. and Davis J.L., 2003. Vertical crustal motion observed in the BIFROST project. J. Geodyn., 35, 425–441, DOI: 10.1016/S0264-3707(03)00005-X.

    Article  Google Scholar 

  • Schuh H., Easterman G., Cretaux J.-F., Berge-Nguyen M. and van Dam T., 2004. Investigation of hydrological and atmospheric loading by space geodetic techniques. In: Hwang C., Shum C.-K. and Li J.C. (Eds.) Satellite Altimetry for Geodesy, Geophysics and Oceanography. International Association of Geodesy Symposia 126, 123–132, Springer-Verlag, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Souriau A. and Pauchet H., 1998. A new synthesis of Pyrenean seismicity and its tectonic implications. Tectonophysics, 290, 221–224, DOI:10.1016/S0040-1951(98)00017-1.

    Article  Google Scholar 

  • Tesmer V., Steigenberger P., Rothacher M., Boehm J. and Meisel B., 2009. Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J. Geodesy, 83, 973–988. DOI:10.1007/s00190009-0316-3.

    Article  Google Scholar 

  • Tesmer V., Steigenberger P., van Dam T. and Mayer-Gürr T., 2011. Vertical deformations from homogeneously processed GRACE and global GPS long-term series. J. Geodesy, 85, 291–310, DOI: 10.1007/s00190-010-0437-8.

    Article  Google Scholar 

  • Tregoning P. and van Dam T., 2005. Atmospheric pressure loading corrections applied to GPS data at the observation level. Geophys. Res. Lett., 32, L22310. DOI:10.1029/2005GL024104.

    Article  Google Scholar 

  • Tregoning P., Watson C., Ramillien G., McQueen H. and Zhang J., 2009. Detecting hydrologic deformation using GRACE and GPS. Geophys. Res. Lett., 36, L15401, DOI: 10.1029/2009GL038718.

    Article  Google Scholar 

  • Trenberth K. and Smith L., 2005. The mass of the atmosphere: A constraint on global analyses. J. Clim., 18, 864–875, DOI: 10.1175/JCLI-3299.1.

    Article  Google Scholar 

  • van Dam T. and Herring T.A., 1994. Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res., 99(B3), 4505–4517, DOI: 10.1029 /93JB02758.

    Article  Google Scholar 

  • van Dam T., Blewitt G. and Heflin M.B., 1994. Atmospheric pressure loading effects on Global Positioning System coordinate determinations. J. Geophys. Res., 99(B12), 23939–23950, DOI: 10.1029/94JB02122.

    Article  Google Scholar 

  • van Dam T., Wahr J., Chao Y. and Leuliette E., 1997. Predictions of crustal deformation and geoid and sea level variability caused by oceanic and atmospheric loading. Geophys. J. Int., 129, 507–517, DOI: 10.1111/j.1365246X.1997.tb04490.x.

    Article  Google Scholar 

  • van Dam T., Wahr J., Milly P.C.D., Shmakin A.B., Blewitt G., Lavallée D. and Larson K.M., 2001. Crustal displacements due to continental water loading. Geophys. Res. Lett., 28, 651–654, DOI:10.1029/2000GL012120.

    Google Scholar 

  • van Dam T., Altamimi Z., Collilieux X. and Ray J., 2010. Topographically induced height errors in predicted atmospheric loading effects. J. Geophys. Res., 115, B07415, DOI: 10.1029/2009JB006810.

    Google Scholar 

  • van Dam T., Collilieux X., Wuite J., Altamimi Z. and Ray J., 2012. Nontidal ocean loading: amplitudes and potential effects in GPS height time series. J. Geodesy, 86, 1043–1057, DOI.:10.1007/s00190-012-0564-5.

    Article  Google Scholar 

  • Wessel P. and Smith W.H.F., 1998. New, improved version of Generic Mapping Tools released. EOS Trans. AGU, 79(47), 579.

    Article  Google Scholar 

  • Williams S.D.P. and Penna N.T., 2011. Non-tidal ocean loading effects on geodetic GPS heights. Geophys. Res. Lett., 38, L09314, DOI:10.1029/2011GL046940.

    Article  Google Scholar 

  • Zhang Y., Wallace J. and Battisti D., 1997. ENSO-like interdecadal variability: 1900–93. J. Clim., 10, 1004–1020.

    Article  Google Scholar 

  • Zerbini S., Richter B., Negusini M., Romagnoli C., Simon D., Domenichini F. and Schwahn W., 2001. Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth Planet Sci. Lett., 192, 267–279, DOI: 10.1016/S0012-821X(01)00445-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcell Ferenc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferenc, M., Nicolas, J., van Dam, T. et al. An estimate of the influence of loading effects on tectonic velocities in the Pyrenees. Stud Geophys Geod 58, 56–75 (2014). https://doi.org/10.1007/s11200-012-0458-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-012-0458-2

Keywords