Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiresolution Analysis of Active Region Magnetic Structure and its Correlation with the Mount Wilson Classification and Flaring Activity

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Two different multiresolution analyses are used to decompose the structure of active-region magnetic flux into concentrations of different size scales. Lines separating these opposite polarity regions of flux at each size scale are found. These lines are used as a mask on a map of the magnetic field gradient to sample the local gradient between opposite polarity regions of given scale sizes. It is shown that the maximum, average, and standard deviation of the magnetic flux gradient for α,β,β γ, and β γ δ active-regions increase in the order listed, and that the order is maintained over all length scales. Since magnetic flux gradient is strongly linked to active-region activity, such as flares, this study demonstrates that, on average, the Mt. Wilson classification encodes the notion of activity over all length scales in the active-region, and not just those length scales at which the strongest flux gradients are found. Further, it is also shown that the average gradients in the field, and the average length-scale at which they occur, also increase in the same order. Finally, there are significant differences in the gradient distribution, between flaring and non-flaring active regions, which are maintained over all length scales. It is also shown that the average gradient content of active-regions that have large flares (GOES class “M” and above) is larger than that for active regions containing flares of all flare sizes; this difference is also maintained at all length scales. All of the reported results are independent of the multiresolution transform used. The implications for the Mt. Wilson classification of active-regions in relation to the multiresolution gradient content and flaring activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramenko, V.I.: 2005, Multifractal analysis of solar magnetograms. Solar Phys. 228, 29 – 42. doi:10.1007/s11207-005-3525-9.

    Article  ADS  Google Scholar 

  • Abramenko, V.I., Yurchyshyn, V.B., Wang, H., Spirock, T.J., Goode, P.R.: 2002, Scaling behavior of structure functions of the longitudinal magnetic field in active regions on the sun. Astrophys. J. 577, 487 – 495. doi:10.1086/342169.

    Article  ADS  Google Scholar 

  • Barlow, R.J.: 1989, Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, Wiley, New York.

    MATH  Google Scholar 

  • Bratsolis, E., Sigelle, M.: 1998, Solar image segmentation by use of mean field fast annealing. Astron. Astrophys. Suppl. 131, 371 – 375.

    Article  ADS  Google Scholar 

  • Conlon, P.A., Gallagher, P.T., McAteer, R.T.J., Ireland, J., Young, C.A., Kestener, P., Hewett, R.J., Maguire, K.: 2008, Multifractal properties of evolving active regions. Solar Phys. 248, 297 – 309. doi:10.1007/s11207-007-9074-7.

    Article  ADS  Google Scholar 

  • Cui, Y., Li, R., Zhang, L., He, Y., Wang, H.: 2006, Correlation between solar flare productivity and photospheric magnetic field properties 1. Maximum horizontal gradient, length of neutral line, number of singular points. Solar Phys. 237, 45 – 659. doi:10.1007/s11207-006-0077-6.

    Article  ADS  Google Scholar 

  • De Moortel, I., Munday, S.A., Hood, A.W.: 2004, Wavelet analysis: The effect of varying basic wavelet parameters. Solar Phys. 222, 203 – 228. doi:10.1023/B:SOLA.0000043578.01201.2d.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1 – 37.

    Article  ADS  Google Scholar 

  • Dudok de Wit, T.: 2006, Fast segmentation of solar extreme ultraviolet images. Solar Phys. 239, 519 – 530. doi:10.1007/s11207-006-0140-3.

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2002, Correlation of the coronal mass ejection productivity of solar active regions with measures of their global nonpotentiality from vector magnetograms: Baseline results. Astrophys. J. 569, 1016 – 1025. doi:10.1086/339161.

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Gary, G.A.: 2006, Magnetic causes of solar coronal mass ejections: Dominance of the free magnetic energy over the magnetic twist alone. Astrophys. J. 644, 1258 – 1272. doi:10.1086/503699.

    Article  ADS  Google Scholar 

  • Falconer, D.A., Moore, R.L., Porter, J.G., Gary, G.A., Shimizu, T.: 1997, Neutral-line magnetic shear and enhanced coronal heating in solar active regions. Astrophys. J. 482, 519 – 534. doi:10.1086/304114.

    Article  ADS  Google Scholar 

  • Gallagher, P.T., Moon, Y.J., Wang, H.: 2002, Active-region monitoring and flare forecasting I. Data processing and first results. Solar Phys. 209, 171 – 183. doi:10.1023/A:1020950221179.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K.: 2005, Turbulence in the solar atmosphere: Manifestations and diagnostics via solar image processing. Solar Phys. 228, 5 – 27. doi:10.1007/s11207-005-2513-4.

    Article  ADS  Google Scholar 

  • Gonzalez, R.C., Woods, R.E.: 2001, Digital Image Processing, Addison-Wesley Longman, Boston. ISBN 0201180758.

    Google Scholar 

  • Hewett, R.J., Gallagher, P.T., McAteer, R.T.J., Young, C.A., Ireland, J., Conlon, P.A., Maguire, K.: 2008, Multiscale analysis of active region evolution. Solar Phys. 248, 311 – 322. doi:10.1007/s11207-007-9028-0.

    Article  ADS  Google Scholar 

  • Keeping, E.S.: 1995, Introduction to Statistical Inference, Dover International, New York (first published 1962).

    Google Scholar 

  • Lawrence, J.K., Ruzmaikin, A.A., Cadavid, A.C.: 1993, Multifractal measure of the solar magnetic field. Astrophys. J. 417, 805 – 811. doi:10.1086/173360.

    Article  ADS  Google Scholar 

  • Lawrence, J.K., Cadavid, A.C., Ruzmaikin, A.A.: 1996, On the multifractal distribution of solar magnetic fields. Astrophys. J. 465, 425 – 435. doi:10.1086/177430.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003a, Photospheric magnetic field properties of flaring versus flare-quiet active regions. I. Data, general approach, and sample results. Astrophys. J. 595, 1277 – 1295. doi:10.1086/377511.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2003b, Photospheric magnetic field properties of flaring versus flare-quiet active regions. II. Discriminant analysis. Astrophys. J. 595, 1296 – 1306. doi:10.1086/377512.

    Article  ADS  Google Scholar 

  • Leka, K.D., Barnes, G.: 2007, Photospheric magnetic field properties of flaring versus flare-quiet active regions. IV. A statistically significant sample. Astrophys. J. 656, 1173 – 1186. doi:10.1086/510282.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J.: 2005, Statistics of active region complexity: A large-scale fractal dimension survey. Astrophys. J. 631, 628 – 635. doi:10.1086/432412.

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Ireland, J., Young, C.A.: 2005, Automated boundary-extraction and region-growing techniques applied to solar magnetograms. Solar Phys. 228, 55 – 66. doi:10.1007/s11207-005-4075-x.

    Article  ADS  Google Scholar 

  • McIntosh, P.S.: 1990, The classification of sunspot groups. Solar Phys. 125, 251 – 267.

    Article  ADS  Google Scholar 

  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I., MDI Engineering Team: 1995, The solar oscillations investigation – Michelson Doppler imager. Solar Phys. 162, 129 – 188.

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. 655, L117 – L120. doi:10.1086/511857.

    Article  ADS  Google Scholar 

  • Starck, J.L., Murtagh, F., Bijaoui, A.: 1998, Image Processing and Data Analysis. The Multiscale Approach, Cambridge University Press, Cambridge. ISBN: 0521590841.

    Google Scholar 

  • Turmon, M., Pap, J.M., Mukhtar, S.: 2002, Statistical pattern recognition for labeling solar active regions: Application to SOHO/MDI imagery. Astrophys. J. 568, 396 – 407. doi:10.1086/338681.

    Article  ADS  Google Scholar 

  • Wall, J.V., Jenkins, C.R.: 2003, Practical Statistics for Astronomers, Cambridge University Press, Cambridge.

    Google Scholar 

  • Wasserman, L.: 2004, All of Statistics: A Concise Course in Statistical Inference, Springer Texts in Statistics, Springer, New York. ISBN 0387402721.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ireland, J., Young, C.A., McAteer, R.T.J. et al. Multiresolution Analysis of Active Region Magnetic Structure and its Correlation with the Mount Wilson Classification and Flaring Activity. Sol Phys 252, 121–137 (2008). https://doi.org/10.1007/s11207-008-9233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-008-9233-5

Keywords