Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The RHESSI Microflare Height Distribution

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6 – 10 keV count-rate when RHESSI’s full sensitivity was available in order to find the smallest events (Christe et al. in Astrophys. J. 677, 1385, 2008). Between March 2002 and March 2007, a total of 25 006 events were found. Source locations were determined in the 4 – 10 keV, 10 – 15 keV, and 15 – 30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g(h)∝exp (−h/λ) where λ=6.1±0.3 Mm is the scale height. A power-law height distribution with a negative power-law index, γ=3.1±0.1 is also consistent with the data. Interpreted as thermal loop-top sources, these heights are compared to loops generated by a potential-field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential-field loop height distribution, which may be a signature of the flare energization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, M.D., Newkirk, G.: 1969, Solar Phys. 9, 131.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Schwartz, R.A., Alt, D.M.: 1995, Astrophys. J. 447, 923.

    Article  ADS  Google Scholar 

  • Aschwanden, M.J., Brown, J.C., Kontar, E.P.: 2002, Solar Phys. 210, 383.

    Article  ADS  Google Scholar 

  • Catalano, C.P., van Allen, J.A.: 1973, Astrophys. J. 185, 335.

    Article  ADS  Google Scholar 

  • Christe, S., Hannah, I.G., Krucker, S., McTiernan, J., Lin, R.P.: 2008, Astrophys. J. 677, 1385.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Christe, S., Krucker, S., Hurford, G.J., Hudson, H.S., Lin, R.P.: 2008, Astrophys. J. 677, 704.

    Article  ADS  Google Scholar 

  • Hoeksema, J.T.: 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields. PhD thesis, Stanford Univ., CA.

  • Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: 2002, Solar Phys. 210, 61.

    Article  ADS  Google Scholar 

  • Kane, S.R.: 1983, Solar Phys. 86, 355.

    Article  ADS  Google Scholar 

  • Kane, S.R., Anderson, K.A., Evans, W.D., Klebesadel, R.W., Laros, J.: 1979, Astrophys. J. Lett. 233, 151.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Hannah, I.G., MacKinnon, A.L.: 2008, Astron. Astrophys. 489, 57.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Hannah, I.G., Jeffrey, N.L.S., Battaglia, M.: 2010, Astrophys. J. 717, 250.

    Article  ADS  Google Scholar 

  • Matsushita, K., Masuda, S., Kosugi, T., Inda, M., Yaji, K.: 1992, Publ. Astron. Soc. Japan 44, 89.

    ADS  Google Scholar 

  • Ohki, K., Takakura, T., Tsuneta, S., Nitta, N.: 1983, Solar Phys. 86, 301.

    Article  ADS  Google Scholar 

  • Sato, J., Matsumoto, Y., Yoshimura, K., Kubo, S., Kotoku, J., Masuda, S., Sawa, M., Suga, K., Yoshimori, M., Kosugi, T., Watanabe, T.: 2006, Solar Phys. 236, 351.

    Article  ADS  Google Scholar 

  • Schatten, K.H., Wilcox, J.M., Ness, N.F.: 1969, Solar Phys. 6, 442.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Solar Phys. 212, 165.

    Article  ADS  Google Scholar 

  • Smith, D.M., Lin, R.P., Turin, P., Curtis, D.W., Primbsch, J.H., Campbell, R.D., Abiad, R., Schroeder, P., Cork, C.P., Hull, E.L., Landis, D.A., Madden, N.W., Malone, D., Pehl, R.H., Raudorf, T., Sangsingkeow, P., Boyle, R., Banks, I.S., Shirey, K., Schwartz, R.: 2002, Solar Phys. 210, 33.

    Article  ADS  Google Scholar 

  • Takakura, T., Tanaka, K., Nitta, N., Kai, K., Ohki, K.: 1986, Solar Phys. 107, 109.

    Article  ADS  Google Scholar 

  • Tsuneta, S., Takakura, T., Nitta, N., Makishima, K., Murakami, T., Oda, M., Ogawara, Y., Kondo, I., Ohki, K., Tanaka, K.: 1984, Astrophys. J. 280, 887.

    Article  ADS  Google Scholar 

  • Wang, Y., Sheeley, N.R. Jr.: 1992, Astrophys. J. 392, 310.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Christe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christe, S., Krucker, S. & Saint-Hilaire, P. The RHESSI Microflare Height Distribution. Sol Phys 270, 493–502 (2011). https://doi.org/10.1007/s11207-011-9777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9777-7

Keywords