Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Can We Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Measurements?

  • SOLAR FLARE MAGNETIC FIELDS AND PLASMAS
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The availability of vector-magnetogram sequences with sufficient accuracy and cadence to estimate the temporal derivative of the magnetic field allows us to use Faraday’s law to find an approximate solution for the electric field in the photosphere, using a Poloidal–Toroidal Decomposition (PTD) of the magnetic field and its partial time derivative. Without additional information, however, the electric field found from this technique is under-determined – Faraday’s law provides no information about the electric field that can be derived from the gradient of a scalar potential. Here, we show how additional information in the form of line-of-sight Doppler-flow measurements, and motions transverse to the line-of-sight determined with ad-hoc methods such as local correlation tracking, can be combined with the PTD solutions to provide much more accurate solutions for the solar electric field, and therefore the Poynting flux of electromagnetic energy in the solar photosphere. Reliable, accurate maps of the Poynting flux are essential for quantitative studies of the buildup of magnetic energy before flares and coronal mass ejections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chae, J., Sakurai, T.: 2008, A test of three optical flow techniques – LCT, DAVE, and NAVE. Astrophys. J. 689, 593 – 612. doi: 10.1086/592761 .

    Article  ADS  Google Scholar 

  • Fisher, G.H., Welsch, B.T.: 2008, FLCT: A fast, efficient method for performing local correlation tracking. In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Subsurface and Atmospheric Influences on Solar Activity CS-383, Astron. Soc. Pac., San Francisco, 373 – 380 (also arXiv:0712.4289 ).

    Google Scholar 

  • Fisher, G.H., Welsch, B.T., Abbett, W.P., Bercik, D.J.: 2010, Estimating electric fields from vector magnetogram sequences. Astrophys. J. 715, 242 – 259. doi: 10.1088/0004-637X/715/1/242 .

    Article  ADS  Google Scholar 

  • Hurlburt, N.E., Schrijver, C.J., Shine, R.A., Title, A.M.: 1995, Simulated MDI observations of convection. In: Hoeksema, J.T., Domingo, V., Fleck, B., Battrick, B. (eds.) Helioseismology SP-376, ESA, Noordwijk, 239.

    Google Scholar 

  • Kusano, K., Maeshiro, T., Yokoyama, T., Sakurai, T.: 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577, 501 – 512.

    Article  ADS  Google Scholar 

  • Longcope, D.W.: 2004, Inferring a photospheric velocity field from a sequence of vector magnetograms: the minimum energy fit. Astrophys. J. 612, 1181 – 1192.

    Article  ADS  Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427 – 442.

    Article  ADS  Google Scholar 

  • Potts, H.E., Barrett, R.K., Diver, D.A.: 2004, Balltracking: An highly efficient method for tracking flow fields. Astron. Astrophys. 424, 253 – 262. doi: 10.1051/0004-6361:20035891 .

    Article  ADS  Google Scholar 

  • Ravindra, B., Longcope, D.W., Abbett, W.P.: 2008, Inferring photospheric velocity fields using a combination of minimum energy fit, local correlation tracking, and Doppler velocity. Astrophys. J. 677, 751 – 768. doi: 10.1086/528363 .

    Article  ADS  Google Scholar 

  • Scherrer, P.H., The HMI Team: 2005, The helioseismic and magnetic imager for the solar dynamics observatory. In: AGU Spring Meeting Abstracts, 43-05.

    Google Scholar 

  • Schuck, P.W.: 2006, Tracking magnetic footpoints with the magnetic induction equation. Astrophys. J. 646, 1358 – 1391. doi: 10.1086/505015 .

    Article  ADS  Google Scholar 

  • Schuck, P.W.: 2008, Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 1134 – 1152. doi: 10.1086/589434 .

    Article  ADS  Google Scholar 

  • Schuck, P.W., Sun, X., Muglach, K., Hoeksema, J.T.: 2010, Tracking vector magnetograms from the solar dynamics observatory. In: AGU Fall Meeting Abstracts, A7.

    Google Scholar 

  • Title, A.M., Hurlburt, N.E., Schrijver, C.J., Shine, R.A., Tarbell, T.: 1995, Observations of convection. In: Hoeksema, J.T., Domingo, V., Fleck, B., Battrick, B. (eds.) Helioseismology SP-376, ESA, Noordwijk, 113.

    Google Scholar 

  • Welsch, B.T.: 2006, Magnetic flux cancellation and coronal magnetic energy. Astrophys. J. 638, 1101 – 1109. doi: 10.1086/498638 .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Fisher, G.H., Abbett, W.P., Regnier, S.: 2004, ILCT: Recovering photospheric velocities from magnetograms by combining the induction equation with local correlation tracking. Astrophys. J. 610, 1148 – 1156. doi: 10.1086/421767 .

    Article  ADS  Google Scholar 

  • Welsch, B.T., Abbett, W.P., DeRosa, M.L., Fisher, G.H., Georgoulis, K., Kusano, M.K., Longcope, D.W., Ravindra, B., Schuck, P.W.: 2007, Tests and comparisons of velocity inversion techniques. Astrophys. J. 670, 1434 – 1452.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Fisher.

Additional information

Solar Flare Magnetic Fields and Plasmas

Guest Editors: Y. Fan and G.H. Fisher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, G.H., Welsch, B.T. & Abbett, W.P. Can We Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Measurements?. Sol Phys 277, 153–163 (2012). https://doi.org/10.1007/s11207-011-9816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9816-4

Keywords