Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Automated Algorithm to Distinguish and Characterize Solar Flares and Associated Sequential Chromospheric Brightenings

  • IMAGE PROCESSING IN THE PETABYTE ERA
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We present a new automated algorithm to identify, track, and characterize small-scale brightening associated with solar eruptive phenomena observed in Hα. The temporal, spatially localized changes in chromospheric intensities can be separated into two categories: flare ribbons and sequential chromospheric brightenings (SCBs). Within each category of brightening we determine the smallest resolvable locus of pixels, a kernel, and track the temporal evolution of the position and intensity of each kernel. This tracking is accomplished by isolating the eruptive features, identifying kernels, and linking detections between frames into trajectories of kernels. We fully characterize the evolving intensity and morphology of the flare ribbons by observing the tracked flare kernels in aggregate. With the location of SCB and flare kernels identified, they can easily be overlaid on complementary data sets to extract Doppler velocities and magnetic-field intensities underlying the kernels. This algorithm is adaptable to any dataset to identify and track solar features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balasubramaniam, K.S., Pevtsov, A.A., Neidig, D.F., Cliver, E.W., Thompson, B.J., Young, C.A., Martin, S.F., Kiplinger, A.: 2005, Sequential chromospheric brightenings beneath a transequatorial halo coronal mass ejection. Astrophys. J. 630, 1160 – 1167. doi: 10.1086/432030 .

    Article  ADS  Google Scholar 

  • Balasubramaniam, K.S., Pevtsov, A.A., Neidig, D.F., Hock, R.A.: 2006, Large scale solar chromospheric eruptive activity – a signature of magnetic reconnection. In: Gopalswamy, N., Bhattacharyya, A. (eds.) Proc. ILWS Workshop, Goa, India Quest, Mumboi, 65.

    Google Scholar 

  • Crocker, J.C., Grier, D.G.: 1996, Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179(1), 298 – 310. doi: 10.1006/jcis.1996.0217 .

    Article  Google Scholar 

  • Gill, C.D., Fletcher, L., Marshall, S.: 2010, Using active contours for semi-automated tracking of UV and EUV solar flare ribbons. Solar Phys. 262, 355 – 371. doi: 10.1007/s11207-010-9508-5 .

    Article  ADS  Google Scholar 

  • Hestroffer, D., Magnan, C.: 1998, Wavelength dependency of the Solar limb darkening. Astron. Astrophys. 333, 338 – 342.

    ADS  Google Scholar 

  • Maurya, R.A., Ambastha, A.: 2010, A technique for automated determination of flare ribbon separation and energy release. Solar Phys. 262, 337 – 353. doi: 10.1007/s11207-009-9488-5 .

    Article  ADS  Google Scholar 

  • McAteer, R.T.J., Gallagher, P.T., Williams, D.R., Mathioudakis, M., Phillips, K.J.H., Keenan, F.P.: 2002, Long-period chromospheric oscillations in network bright points. Astrophys. J. Lett. 567, L165 – L168. doi: 10.1086/340110 .

    Article  ADS  Google Scholar 

  • Neckel, H., Labs, D.: 1994, Solar limb darkening 1986 – 1990 (lambda 303 to 1099 nm). Solar Phys. 153, 91 – 114. doi: 10.1007/BF00712494 .

    Article  ADS  Google Scholar 

  • Neidig, D., Wiborg, P., Confer, M., Haas, B., Dunn, R., Balasubramaniam, K.S., Gullixson, C., Craig, D., Kaufman, M., Hull, W., McGraw, R., Henry, T., Rentschler, R., Keller, C., Jones, H., Coulter, R., Gregory, S., Schimming, R., Smaga, B.: 1998, The USAF improved solar observing optical network (ISOON) and its impact on solar synoptic data bases. In: Balasubramaniam, K.S., Harvey, J., Rabin, D. (eds.) Synoptic Solar Physics, CS-140, Astron. Soc. Pacific, San Francisco, 519.

    Google Scholar 

  • November, L.J., Simon, G.W.: 1988, Precise proper-motion measurement of solar granulation. Astrophys. J. 333, 427 – 442. doi: 10.1086/166758 .

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Balasubramaniam, K.S., Hock, R.A.: 2007, Sequential chromospheric brightenings: The case for chromospheric evaporation. Adv. Space Res. 39, 1781 – 1786. doi: 10.1016/j.asr.2007.02.058 .

    Article  ADS  Google Scholar 

  • Qu, M., Shih, F.Y., Jing, J., Wang, H.: 2003, Automatic solar flare detection using MLP, RBF, and SVM. Solar Phys. 217, 157 – 172.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Kirk.

Additional information

Image Processing in the Petabyte Era

Guest Editors: J. Ireland and C.A. Young

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirk, M.S., Balasubramaniam, K.S., Jackiewicz, J. et al. An Automated Algorithm to Distinguish and Characterize Solar Flares and Associated Sequential Chromospheric Brightenings. Sol Phys 283, 97–111 (2013). https://doi.org/10.1007/s11207-011-9843-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11207-011-9843-1

Keywords